Skip to main content
Log in

Collaborative Multi-domain Routing in SDN Environments

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Today’s Internet is a collection of multi-domain networks where each domain is usually administrated and managed by a single network operator. Unfortunately, network operators share minimal information with each other and do not collaborate much to improve their routing decisions and the overall performance of the resulting large-scale mutli-domain network. Motivated by the need to solve this problem, in this paper, we look at this particular challenge and propose a novel collaborative multi-domain routing framework that is able to efficiently route the incoming flows through the different domains while ensuring their performance requirements in terms of delay and bandwidth and maximizing the overall network utilization. We hence propose an integer linear program to solve this problem and develop a greedy algorithm to cope with large-scale instances of the problem. Simulation results show that the proposed collaboration mechanism is able to significantly optimize network utilization and maximize the number of routed flows with guaranteed performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Famaey, J., Latré, S., Wauters, T., De Turck, F.: End-to-end resource management for federated delivery of multimedia services. J. Netw. Syst. Manag. 22(3), 396–433 (2014)

    Article  Google Scholar 

  2. Karakus, M., Durresi, A.: Quality of service (QoS) in software defined networking (SDN): a survey. J. Netw. Comput. Appl. 80, 200–218 (2017)

    Article  Google Scholar 

  3. Zhani, M.F., ElBakoury, H.: FlexNGIA: a flexible Internet architecture for the next-generation tactile Internet. J. Netw. Syst. Manag. (2020). https://doi.org/10.1007/s10922-020-09525-0

    Article  Google Scholar 

  4. Clemm, A., Zhani, M.F., Boutaba, R.: Network Management 2030: operations and control of network 2030 services. J. Netw. Syst. Manag. 28, 721–750 (2020)

    Article  Google Scholar 

  5. Varghese, B., Leitner, P., Ray, S., Chard, K., Barker, A., Elkhatib, Y., Herry, H., Hong, C., Singer, J., Tso, F.P., Yoneki, E., Zhani, M.F.: Cloud futurology. IEEE Comput. 52(9), 68–77 (2019)

    Article  Google Scholar 

  6. Nandan, A., Porowski, M.C., Liu, P., Forsman, J.: Survey Analysis: NFV/SDN Adoption in CSPs Calls for Strategic Changes in Transformation Programs (2018). https://www.gartner.com/doc/3843377/survey-analysis-nfvsdn-adoption-csps. Accessed 27 Oct 2021

  7. Tootoonchian, A., Ganjali, Y.: HyperFlow: a distributed control plane for openflow. In: Proceedings of the 2010 Internet Network Management Conference on Research on Enterprise Networking, vol. 3 (2010)

  8. Phan, X.T., Thoai, N., Kuonen, P.: A collaborative model for routing in multi-domains OpenFlow networks. In: International Conference on Computing, Management and Telecommunications (ComManTel), pp. 278–283. IEEE (2013)

  9. Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor, B., Radoslavov, P., Snow, W., Parulkar, G.: ONOS: towards an open, distributed SDN OS. In: Proceedings of the Third Workshop on Hot Topics in Software Defined Networking, pp. 1–6. ACM (2014)

  10. Medved, J., Varga, R., Tkacik, A., Gray, K.: OpenDaylight: towards a model-driven SDN controller architecture. In: Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, pp. 1–6 (2014). https://doi.org/10.1109/WoWMoM.2014.6918985

  11. Jahan, R., Shaik, S., Kotaru, K., Sangam, S., Kuppili, D.-C.: OpenDaylight Project (2018). https://wiki.opendaylight.org/. Accessed 27 Oct 2021

  12. Yin, H., Xie, H., Tsou, T., Lopez, D., Aranda, P., Sidi, R.: SDNi: A Message Exchange Protocol for Software Defined Networks (SDNs) Across Multiple Domains: IETF Draft. IETF, Fremont (2012)

    Google Scholar 

  13. Marconett, D., Yoo, S.B.: FlowBroker: a software-defined network controller architecture for multi-domain brokering and reputation. J. Netw. Syst. Manag. 23(2), 328–359 (2015)

    Article  Google Scholar 

  14. Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., Parulkar, G.: FlowVisor: A Network Virtualization Layer. OpenFlow Switch Consortium. Technical Report 1, p. 132 (2009)

  15. Vilalta, R., Mayoral, A., Pubill, D., Casellas, R., Martínez, R., Serra, J., Verikoukis, C., Muñoz, R.: End-to-end SDN orchestration of IoT services using an SDN/NFV-enabled edge node. In: 2016 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3 (2016)

  16. Kotronis, V., Gämperli, A., Dimitropoulos, X.: Routing centralization across domains via SDN: a model and emulation framework for BGP evolution. Comput. Netw. 92, 227–239 (2015)

    Article  Google Scholar 

  17. Gerola, M., Lucrezia, F., Santuari, M., Salvadori, E., Ventre, P.L., Salsano, S., Campanella, M.: ICONA: a peer-to-peer approach for software defined wide area networks using ONOS. In: 2016 Fifth European Workshop on Software-Defined Networks (EWSDN), pp. 37–42 (2016). https://doi.org/10.1109/EWSDN.2016.12

  18. Manolova, A., Ruepp, S.: Export policies for multi-domain WDM networks. In: 2010 Conference on Optical Fiber Communication (OFC/NFOEC), Collocated National Fiber Optic Engineers Conference, pp. 1–3 (2010). https://doi.org/10.1364/NFOEC.2010.NWA5

  19. Giorgetti, A., Paolucci, F., Cugini, F., Castoldi, P.: Hierarchical PCE in GMPLS-based multi-domain Wavelength Switched Optical Networks. In: 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, pp. 1–3 (2011)

  20. Siracusa, D., Grita, S., Maier, G., Pattavina, A., Paolucci, F., Cugini, F., Castoldi, P.: Domain sequence protocol (DSP) for PCE-based multi-domain traffic engineering. IEEE/OSA J. Opt. Commun. Netw. 4(11), 876–884 (2012). https://doi.org/10.1364/JOCN.4.000876

    Article  Google Scholar 

  21. Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed Internet routing convergence. ACM SIGCOMM Comput. Commun. Rev. 30(4), 175–187 (2000)

    Article  Google Scholar 

  22. Nayyer, A., Sharma, A.K., Awasthi, L.K.: Laman: a supervisor controller based scalable framework for software defined networks. Comput. Netw. 159, 125–134 (2019)

    Article  Google Scholar 

  23. Kotronis, V., Dimitropoulos, X., Ager, B.: Outsourcing the routing control logic: better Internet routing based on SDN principles. In: Proceedings of the 11th ACM Workshop on Hot Topics in Networks, pp. 55–60. ACM (2012)

  24. Thai, P., de Oliveira, J.C.: Decoupling policy from routing with software defined interdomain management: interdomain routing for SDN-based networks. In: 2013 22nd International Conference on Computer Communication and Networks (ICCCN), pp. 1–6. IEEE (2013)

  25. Feamster, N., Rexford, J., Shenker, S., Clark, R., Hutchins, R., Levin, D., Bailey, J.: SDX: a software defined Internet exchange. In: Open Networking Summit, vol. 1 (2013)

  26. Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed Internet routing convergence. IEEE/ACM Trans. Netw. 9(3), 293–306 (2001)

    Article  Google Scholar 

  27. Lin, P., Hart, J., Krishnaswamy, U., Murakami, T., Kobayashi, M., Al-Shabibi, A., Wang, K.-C., Bi, J.: Seamless interworking of SDN and IP. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, pp. 475–476 (2013)

  28. Douville, R., Rougier, J.-L., Secci, S.: A service plane over the PCE architecture for automatic multidomain connection-oriented services. IEEE Commun. Mag. 46(6), 94–102 (2008)

    Article  Google Scholar 

  29. Casellas, R., Martínez, R., Muñoz, R., Vilalta, R., Liu, L.: Control and orchestration of multidomain optical networks with GMPLS as inter-SDN controller communication. J. Opt. Commun. Netw. 7(11), 46–54 (2015)

    Article  Google Scholar 

  30. Choi, J.S., Li, X.: Hierarchical distributed topology discovery protocol for multi-domain SDN networks. IEEE Commun. Lett. 21(4), 773–776 (2016)

    Article  Google Scholar 

  31. Elguea, L.M., Martinez-Rios, F.: New metrics to modify BGP routes based on SDN. Wirel. Netw. 26, 1–8 (2019)

    Article  Google Scholar 

  32. Elguea, L.M., Martinez-Rios, F.: An efficient method to compare latencies in order to obtain the best route for SDN. Procedia Comput. Sci. 116, 393–400 (2017)

    Article  Google Scholar 

  33. Karakus, M., Durresi, A.: A scalable inter-AS QoS routing architecture in software defined network (SDN). In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications, pp. 148–154 (2015). https://doi.org/10.1109/AINA.2015.179

  34. Joshi, K.D., Kataoka, K.: PRIME-Q: privacy aware end-to-end QoS framework in multi-domain SDN. In: 2019 IEEE Conference on Network Softwarization (NetSoft), pp. 169–177. IEEE (2019)

  35. Lin, P., Bi, J., Wolff, S., Wang, Y., Xu, A., Chen, Z., Hu, H., Lin, Y.: A west–east bridge based SDN inter-domain testbed. IEEE Commun. Mag. 53(2), 190–197 (2015)

    Article  Google Scholar 

  36. Farrel, A., Vasseur, J., Ash, J.: RFC 4655: A Path Computation Element (PCE)-Based Architecture, August. IETF, Fremont (2006)

    Google Scholar 

  37. King, D., Farrel, A.: The Application of the Path Computation Element Architecture to the Determination of a Sequence of Domains in MPLS and GMPLS: RFC6805. IETF, Fremont (2012)

    Book  Google Scholar 

  38. Giorgetti, A.: Proactive H-PCE architecture with BGP-LS update for multidomain elastic optical networks. J. Opt. Commun. Netw. 7(11), 1–9 (2015)

    Article  Google Scholar 

  39. Casellas, R., Muñoz, R., Martínez, R., Vilalta, R., Liu, L., Tsuritani, T., Morita, I., López, V., de Dios, O.G., Fernández-Palacios, J.P.: SDN orchestration of OpenFlow and GMPLS flexi-grid networks with a stateful hierarchical PCE. IEEE/OSA J. Opt. Commun. Netw. 7(1), 106–117 (2015)

    Article  Google Scholar 

  40. Farrel, A., Vasseur, J., Ash, G.: A Path Computation Element (PCE): RFC 4655. IETF, Fremont (2006). https://www.rfc-editor.org/rfc/rfc4655.html. Accessed 25 Oct 2021

  41. Vasseur, J., Zhang, R., Bitar, N., Le Roux, J.: A Backward-Recursive PCE-Based Computation (BRPC) Procedure to Compute Shortest Constrained Inter-domain Traffic Engineering Label Switched Paths, RFC 5441. Technical Report, April (2009)

  42. IBM: User’s Manual for CPLEX: V12.9.0. IBM (2020). https://www.ibm.com/analytics/cplex-optimizer. Accessed 27 Oct 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Faten Zhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moufakir, T., Zhani, M.F., Gherbi, A. et al. Collaborative Multi-domain Routing in SDN Environments. J Netw Syst Manage 30, 23 (2022). https://doi.org/10.1007/s10922-021-09638-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-021-09638-0

Keywords

Navigation