Skip to main content
Log in

A Management Architecture for IoT Smart Solutions: Design and Implementation

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The management of IoT solutions is a complex task due to their inherent distribution and heterogeneity. IoT management approaches focus on devices and connectivity, thus lacking a comprehensive understanding of the different software, hardware, and communication components that comprise an IoT-based solution. This paper proposes a novel four-layer IoT Management Architecture (IoTManA) that encompasses various aspects of a distributed infrastructure for managing, controlling, and monitoring software, hardware, and communication components, as well as dataflows and data quality. Our architecture provides a cross-layer graph-based view of the end-to-end path between devices and the cloud. IoTManA has been implemented in a set of software components named IoT management system (IoTManS) and tested in two scenarios—Smart Agriculture and Smart Cities—showing that it can significantly contribute to harnessing the complexity of managing IoT solutions. The cross-layer graph-based modeling of IoTManA facilitates the implemented management system (IoTManS) to detect and identify root causes of typically distributed failures occurring in IoT solutions. We conducted a performance analysis of IoTManS focusing on two aspects—failure detection time and scalability—to demonstrate application scenarios and capabilities. The results show that IoTManS can detect and identify the root cause of failures in 806ms to 90,036ms depending on its operation mode, adapting to different IoT needs. Also, the IoTManS scalability is directly proportional to the scalability of the underlying IoT Platform, managing up to 5,000 components simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. https://www.fiware.org.

  2. https://www.mongodb.com.

  3. https://crate.io.

  4. https://www.thethingsnetwork.org/.

  5. https://thingsboard.io/.

  6. https://aws.amazon.com/.

  7. http://www.ntp.org/.

References

  1. Singh, K.J., Kapoor, D.S.: Create your own internet of things: a survey of IoT platforms. IEEE Consum. Electron. Mag. 6(2), 57–68 (2017). https://doi.org/10.1109/MCE.2016.2640718

    Article  Google Scholar 

  2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010

    Article  MATH  Google Scholar 

  3. Martinez, I., Hafid, A.S., Jarray, A.: Design, resource management and evaluation of fog computing systems: a survey. IEEE Internet of Things J. (2020). https://doi.org/10.1109/MCE.2016.2640718

    Article  Google Scholar 

  4. Silva, J..D..C.., Rodrigues, J.J., Al-Muhtadi, J., Rabêlo, R.A., Furtado, V.: Management platforms and protocols for Internet of Things: a survey. Sensors 19(3), 676 (2019). https://doi.org/10.3390/s19030676

    Article  Google Scholar 

  5. Kamienski, C., Soininen, J.P., Taumberger, M., Dantas, R., Toscano, A., Salmon Cinotti, T., Filev Maia, R., Torre Neto, A.: Smart water management platform: IoT-based precision irrigation for agriculture. Sensors 19(2), 276 (2019). https://doi.org/10.3390/s19020276

    Article  Google Scholar 

  6. Yun, M., Yuxin, B.: Research on the architecture and key technology of Internet of Things (IoT) applied on smart grid. In: 2010 International conference on advances in energy engineering, pp. 69–72. IEEE (2010). https://doi.org/10.1109/ICAEE.2010.5557611

  7. Omoniwa, B., Hussain, R., Javed, M.A., Bouk, S.H., Malik, S.A.: Fog/edge computing-based IoT (FECIoT): architecture, applications, and research issuesa. IEEE Internet of Things J. 6(3), 4118–4149 (2018). https://doi.org/10.1109/JIOT.2018.2875544

    Article  Google Scholar 

  8. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future Internet: the Internet of Things architecture, possible applications and key challenges. In: 2012 10th international conference on frontiers of information technology, pp. 257–260. IEEE (2012). https://doi.org/10.1109/FIT.2012.53

  9. Mashal, I., Alsaryrah, O., Chung, T.Y., Yang, C.Z., Kuo, W.H., Agrawal, D.P.: Choices for interaction with things on Internet and underlying issues. Ad Hoc Netw. 28, 68–90 (2015). https://doi.org/10.1016/j.adhoc.2014.12.006

    Article  Google Scholar 

  10. Peña, M.A.L., Fernández, I.M.: SAT-IoT: An architectural model for a high-performance fog/edge/cloud IoT platform. In: 2019 IEEE 5th world forum on internet of things (WF-IoT), pp. 633–638. IEEE (2019). https://doi.org/10.1109/WF-IoT.2019.8767282

  11. C., S.C.: A survey on architecture, protocols and challenges in IoT. Wireless Pers Communications (2020). https://doi.org/10.1007/s11277-020-07108-5

  12. Yaqoob, I., Ahmed, E., Hashem, I.A.T., Ahmed, A.I.A., Gani, A., Imran, M., Guizani, M.: Internet of things architecture: recent advances, taxonomy, requirements, and open challenges. IEEE Wirel. Commun. 24(3), 10–16 (2017). https://doi.org/10.1109/MWC.2017.1600421

    Article  Google Scholar 

  13. Washizaki, H., Ogata, S., Hazeyama, A., Okubo, T., Fernandez, E.B., Yoshioka, N.: Landscape of architecture and design patterns for IoT systems. IEEE Internet of Things J. 7(10), 10091–10101 (2020). https://doi.org/10.1109/JIOT.2020.3003528

    Article  Google Scholar 

  14. 41, I.J.S.: Internet of Things and related: “ISO/IEC 30141. Internet of Things (IoT)—Reference Architecture (2018)

  15. da Cruz, M.A., Rodrigues, J.J., Sangaiah, A.K., Al-Muhtadi, J., Korotaev, V.: Performance evaluation of IoT middleware. J. Netw. Comput. Appl. 109, 53–65 (2018). https://doi.org/10.1109/GLOCOM.2018.8647381

    Article  Google Scholar 

  16. Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Clarke, S.: Middleware for Internet of Things: a survey. IEEE Internet of Things J. 3(1), 70–95 (2015). https://doi.org/10.1109/JIOT.2015.2498900

    Article  Google Scholar 

  17. Lueth, K.: IoT Platform Companies Landscape 2019/2020: 620 IoT Platforms globally. IoT Analytics, Dec (2019)

  18. Calderoni, L., Magnani, A., Maio, D.: IoT Manager: a case study of the design and implementation of an Open Source IoT Platform. In: 2019 IEEE 5th world forum on internet of things (WF-IoT), pp. 749–754. IEEE (2019). https://doi.org/10.1109/WF-IoT.2019.8767304

  19. Yang, J., Park, H., Kim, Y., Choi, J.K.: Programmable objectification and Instance Hosting for IoT nodes. In: 2013 19th Asia-Pacific conference on communications (APCC), pp. 603–608. IEEE (2013). https://doi.org/10.1109/APCC.2013.6766019

  20. Hejazi, H., Rajab, H., Cinkler, T., Lengyel, L.: Survey of platforms for massive IoT. In: 2018 IEEE international conference on future IoT technologies (future IoT), pp. 1–8. IEEE (2018). https://doi.org/10.1109/FIOT.2018.8325598

  21. Girau, R., Pilloni, V., Atzori, L.: The virtual user: The holistic manager of our IoT applications. In: 2018 IEEE 4th world forum on internet of things (WF-IoT), pp. 149–154. IEEE (2018). https://doi.org/10.1109/WF-IoT.2018.8355115

  22. Ray, P.P.: A survey on Internet of Things architectures. J. King Saud Univ.-Comput. Inf. Sci. 30(3), 291–319 (2018). https://doi.org/10.1016/j.jksuci.2016.10.003

    Article  Google Scholar 

  23. Kyuyeong, J., Hyojin, P., Jinhong, Y., Yongrok, K., Kyun, C.J.: A study of Instance Manager for programmable IoT nodes. In: 2014 IEEE 3rd global conference on consumer electronics (GCCE), pp. 350–351. IEEE (2014). https://doi.org/10.1109/GCCE.2014.7031289

  24. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: a language and code generation framework for heterogeneous targets. In: Proceedings of the ACM/IEEE 19th international conference on model driven engineering languages and systems, pp. 125–135 (2016). https://doi.org/10.1145/2976767.2976812

  25. Kim, J., Yu, S., Lee, J.: Short paper: Wireless sensor network management for sustainable Internet of Things. In: 2014 IEEE world forum on internet of things (WF-IoT), pp. 177–178. IEEE (2014). https://doi.org/10.1109/WF-IoT.2014.6803147

  26. Pahl, M.O.: Multi-tenant IoT service management towards an IoT app economy. In: 2019 IFIP/IEEE symposium on integrated network and service management (IM), pp. 1–4. IEEE (2019)

  27. Karmakar, K.K., Varadharajan, V., Nepal, S., Tupakula, U.: SDN enabled secure IoT architecture. IEEE Internet of Things J. 8, 6549–6564 (2020)

    Article  Google Scholar 

  28. Ray, S., Bhunia, S., Jin, Y., Tehranipoor, M.: Security validation in IoT space. In: 2016 IEEE 34th VLSI test symposium (VTS), pp. 1–1. IEEE (2016). https://doi.org/10.1109/VTS.2016.7477288

  29. Brut, M., Gatellier, P., Excoffier, D., Salhi, I., Cherrier, S., Ghamri, Y., Dumont, N., Lopez-Ramos, M.: When devices become collaborative: supporting device interoperability and behaviour reconfiguration across emergency management scenario. In: 2014 IEEE world forum on internet of things (WF-IoT), pp. 259–264. IEEE (2014). https://doi.org/10.1109/WF-IoT.2014.6803169

  30. Zyrianoff, I., Heideker, A., Silva, D., Kleinschmidt, J., Soininen, J.P., Salmon Cinotti, T., Kamienski, C.: Architecting and deploying IoT smart applications: a performance-oriented approach. Sensors 20(1), 84 (2020). https://doi.org/10.3390/s20010084

    Article  Google Scholar 

  31. Mostafa, N., Al Ridhawi, I., Aloqaily, M.: Fog resource selection using historical executions. In: 2018 third international conference on fog and mobile edge computing (FMEC), pp. 272–276. IEEE (2018). https://doi.org/10.1109/FMEC.2018.8364078

  32. Shaik, S., Baskiyar, S.: Resource and service management for Fog Infrastructure as a Service. In: 2018 IEEE international conference on smart cloud (SmartCloud), pp. 64–69. IEEE (2018). https://doi.org/10.1109/SmartCloud.2018.00019

  33. Saha, A., Jindal, S.: EMARS: efficient management and allocation of resources in serverless. In: 2018 IEEE 11th international conference on cloud computing (CLOUD), pp. 827–830. IEEE (2018). https://doi.org/10.1109/CLOUD.2018.00113

  34. Xu, J., Palanisamy, B., Ludwig, H., Wang, Q.: Zenith: Utility-aware resource allocation for edge computing. In: 2017 IEEE international conference on edge computing (EDGE), pp. 47–54. IEEE (2017). https://doi.org/10.1109/IEEE.EDGE.2017.15

  35. Li, Y., Xu, L.: The service computational resource management strategy based on edge-cloud collaboration. In: 2019 IEEE 10th international conference on software engineering and service science (ICSESS), pp. 400–404. IEEE (2019). https://doi.org/10.1109/ICSESS47205.2019.9040830

  36. Brogi, A., Carrasco, J., Durán, F., Pimentel, E., Soldani, J.: Robust management of trans-cloud applications. In: 2019 IEEE 12th international conference on cloud computing (CLOUD), pp. 219–223. IEEE (2019). https://doi.org/10.1109/CLOUD.2019.00046

  37. Linaje, M., Berrocal, J., Galan-Benitez, A.: Mist and edge storage: Fair storage distribution in sensor networks. IEEE Access 7, 123860–123876 (2019). https://doi.org/10.1109/ACCESS.2019.2938443

    Article  Google Scholar 

  38. redha BOUAKOUK, M., ABDELLI, A., MOKDAD, L.: Survey on the Cloud-IoT paradigms: Taxonomy and architectures. In: 2020 IEEE symposium on computers and communications (ISCC), pp. 1–6. IEEE (2020). https://doi.org/10.1109/ISCC50000.2020.9219638

  39. Elliott, D., Otero, C., Ridley, M., Merino, X.: A cloud-agnostic container orchestrator for improving interoperability. In: 2018 IEEE 11th international conference on cloud computing (CLOUD), pp. 958–961. IEEE (2018). https://doi.org/10.1109/CLOUD.2018.00145

  40. Jain, R., Tata, S.: Cloud to edge: distributed deployment of process-aware IoT applications. In: 2017 IEEE international conference on edge computing (EDGE), pp. 182–189. IEEE (2017). https://doi.org/10.1109/IEEE.EDGE.2017.32

  41. Xu, P., Su, J., Zhang, Z.: Distributed hybrid cloud management platform based on rule engine. In: 2018 IEEE 11th international conference on cloud computing (CLOUD), pp. 836–839. IEEE (2018). https://doi.org/10.1109/CLOUD.2018.00116

  42. Avasalcai, C., Tsigkanos, C., Dustdar, S.: Decentralized resource auctioning for latency-sensitive edge computing. In: 2019 IEEE international conference on edge computing (EDGE), pp. 72–76. IEEE (2019). https://doi.org/10.1109/EDGE.2019.00027

  43. Sinche, S., Raposo, D., Armando, N., Rodrigues, A., Boavida, F., Pereira, V., Silva, J.S.: A survey of IoT management protocols and frameworks. IEEE Commun. Surv. Tutor. 22(2), 1168–1190 (2019). https://doi.org/10.1109/COMST.2019.2943087

    Article  Google Scholar 

  44. Nickerson, R., Muntermann, J., Varshney, U., Isaac, H.: Taxonomy development in information systems: Developing a taxonomy of mobile applications. HAL, Working Papers (2009)

  45. Chirpstack. “https://www.chirpstack.io”. Accessed: 2021-05-10

  46. Mobile Alliance, O.: Ngsi requirements - ngsi oma-rd-ngsi-v1.0. 2012 (2012)

  47. Cerveira, F., Barbosa, R., Madeira, H.: Mitigating virtualization failures through migration to a co-located hypervisor. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3098644

    Article  Google Scholar 

  48. Mauro, M.D., Galatro, G., Longo, M., Postiglione, F., Tambasco, M.: Comparative performability assessment of SFCs: the case of containerized IP multimedia subsystem. IEEE Trans. Netw. Serv. Manag. 18(1), 258–272 (2021). https://doi.org/10.1109/TNSM.2020.3044232

    Article  Google Scholar 

  49. Togneri, R., Camponogara, G., Soininen, J.P., Kamienski, C.: Foundations of data quality assurance for IoT-based smart applications. In: 2019 IEEE Latin-American conference on communications (LATINCOM), pp. 1–6. IEEE (2019). https://doi.org/10.1109/LATINCOM48065.2019.8937930

  50. Zyrianoff, I.: SenSE - sensor simulation environment. 2017, github repository. “github.com/ivanzy/SenSE-Sensor-Simulation-Environment”. Accessed 10 May, 2021

  51. Kalitay, H.K., Nambiarz, M.K.: Designing WANem: A wide area network emulator tool. In: 2011 Third international conference on communication systems and networks (COMSNETS 2011), pp. 1–4. IEEE (2011). https://doi.org/10.1109/COMSNETS.2011.5716495

  52. Zyrianoff, I., Heideker, A., Silva, D., Kamienski, C.: Scalability of an Internet of Things platform for smart water management for agriculture. In: 2018 23rd conference of open innovations association (FRUCT), pp. 432–439. IEEE (2018). https://doi.org/10.23919/FRUCT.2018.8588086

  53. Quete, B.e.a.: Understanding the tradeoffs of LoRaWAN for IoT-based smart irrigation. IEEE international workshop on metrology for agriculture and forestry (MetroAgriFor) (2020). https://doi.org/10.1109/MetroAgriFor50201.2020.9277566

  54. Chakraborty, T., Nambi, A.U., Chandra, R., Sharma, R., Swaminathan, M., Kapetanovic, Z., Appavoo, J.: Fall-curve: A novel primitive for iot fault detection and isolation. In: Proceedings of the 16th ACM conference on embedded networked sensor systems, SenSys ’18, p. 95–107. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3274783.3274853

  55. Chen, Y., Zhen, Z., Yu, H., Xu, J.: Application of fault tree analysis and fuzzy neural networks to fault diagnosis in the internet of things (iot) for aquaculture. Sensors (2017). https://doi.org/10.3390/s17010153

    Article  Google Scholar 

  56. Power, A., Kotonya, G.: Bobocep: Distributed complex event processing for resilient fault-tolerance support in iot. In: 2020 IEEE sixth international conference on big data computing service and applications (BigDataService), pp. 109–112 (2020). https://doi.org/10.1109/BigDataService49289.2020.00024

  57. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques–part i: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015). https://doi.org/10.1109/TIE.2015.2417501

    Article  Google Scholar 

  58. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques–part ii: fault diagnosis with knowledge-based and hybrid/active approaches. IEEE Trans. Ind. Electron. 62(6), 3768–3774 (2015). https://doi.org/10.1109/TIE.2015.2419013

    Article  Google Scholar 

  59. Gazzola, L., Mariani, L., Micucci, D.: Automatic software repair: A survey. In: 2018 IEEE/ACM 40th international conference on software engineering (ICSE), pp. 1219–1219 (2018). https://doi.org/10.1145/3180155.3182526

Download references

Funding

Funding was provided by ministério da ciência, tecnologia e inovações and h2020 industrial leadership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dener Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D., Heideker, A., Zyrianoff, I.D. et al. A Management Architecture for IoT Smart Solutions: Design and Implementation. J Netw Syst Manage 30, 35 (2022). https://doi.org/10.1007/s10922-022-09648-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-022-09648-6

Keywords

Navigation