Skip to main content
Log in

Long Boosted Memory Algorithm for Intelligent Spectrum Sensing in 5G and Beyond Systems

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Forthcoming wireless generations, namely the fifth generation and beyond, are experiencing various roll-out, planning, and implementation issues due to spectrum insufficiency. This spectrum shortage arises due to the growing number of wireless subscribers, significant traffic demands, inefficient spectrum distribution, and coexistence problems. The recognition of a free spectrum for wireless communication services is a critical requirement. So, the free spectrum can be predicted and modelled by using the spectrum sensing functionality of cognitive radio in the potential sub-THz band (0.1–1 THz) for beyond fifth-generation networks. Owing to the excellent prediction and classifying capabilities of deep learning, this research applies deep learning for spectrum sensing. The spectrum sensing data is a time-series sequence of binary 1(busy slots) and binary 0(free slots). To achieve this, a novel Long Boosted Memory Algorithm (LBMA) has been proposed here. Long Short-Term Memory (LSTM) are weak predictors unable to model long-term dependencies like a future prediction of primary user presence based on past time stamps and prone to overfitting. So, multiple weak LSTM predictors have been integrated to form a strong predictor not prone to overfitting using the AdaBoost technique for estimating robust spectrum predictions. LBMA uses input vectors like RSSI, the distance between cognitive radio user and gateways, and energy vectors to train the model. LBMA has been compared and evaluated with the existing deep learning methods based on metrics like Training time, Accuracy, sensitivity, specificity, detection probability, cross-validation and Time Complexity under different SNR scenarios (0 to 20 dB). The simulated results indicate that the proposed LBMA has outperformed the existing algorithms with an accuracy of 99.3, a sensitivity of 93.1, specificity of 92.9, sensing time of 1.7599 s with the lowest time complexity, and a training time of 56 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Haykin, S., Thomson, D.J., Reed, J.H.: Spectrum sensing for cognitive radio. Proc. IEEE. 97, 849–877 (2009)

    Article  Google Scholar 

  2. Urkowitz, H.: Energy detection of unknown deterministic signals. Proc. IEEE. 55, 523–531 (1967)

    Article  Google Scholar 

  3. Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11, 116–130 (2009)

    Article  Google Scholar 

  4. Tandra, R., Sahai, A.: SNR walls for signal detection. IEEE J. Sel. Topics Sig. Process. 2, 4–17 (2008)

    Article  Google Scholar 

  5. Wang, H., Yang, E.H., Zhao, Z., Zhang, W.: Spectrum sensing in cognitive radio using goodness of fit testing. IEEE Trans. Wirel. Commun. 8, 5427–5430 (2009)

    Article  Google Scholar 

  6. Zhang, G., Wang, X., Liang, Y.C., Liu, J.: Fast and robust spectrum sensing via Kolmogorov-Smirnov test. IEEE Trans. Commun. 58, 3410–3416 (2010)

    Article  Google Scholar 

  7. Patel, D.K., Trivedi, Y.N.: LRS-G2 based non-parametric spectrum sensing for cognitive radio. In: Proc. CROWNCOM, pp. 330–341 (2016)

  8. Patel, D.K., Soni, B., López-Benítez, M.: Improved likelihood ratio statistic based cooperative spectrum sensing for cognitive radio. IET Commun. 14, 1675–1686 (2019)

    Article  Google Scholar 

  9. López-Benítez, M., Al-Tahmeesschi, A., Patel, D.K., Lehtomaki, J., Umebayashi, K.: Estimation of primary channel activity statistics in cognitive radio based on periodic spectrum sensing observations. IEEE Trans. Wirel. Commun. 18, 983–996 (2019)

    Article  Google Scholar 

  10. Al-Tahmeesschi, A., López-Benítez, M., Patel, D.K., Lehtomaki, J., Umebayashi, K.: On the sample size for the estimation of primary activity statistics based on spectrum sensing. IEEE Trans. Cogn. Commun. Netw. 5, 59–72 (2019)

    Article  Google Scholar 

  11. Umebayashi, K., Kobayashi, M., López-Benítez, M.: Efficient time domain deterministic-stochastic model of spectrum usage. IEEE Trans. Wirel. Commun. 17, 1518–1527 (2018)

    Article  Google Scholar 

  12. Shafiq, M., Choi, J.G.: Adaptive auction framework for spectrum market in cognitive radio networks. J. Netw. Syst. Manag. 26, 518–546 (2018)

    Article  Google Scholar 

  13. Damljanović, Z.: Mobility management strategies in heterogeneous cognitive radio networks. J. Netw. Syst. Manag. 18, 4–22 (2010)

    Article  Google Scholar 

  14. Pastirčák, J., Friga, L., Kováč, V., Gazda, J., Gazda, V.: An agent-based economy model of real-time secondary market for the cognitive radio networks. J. Netw. Syst. Manag. 24, 427–443 (2016)

    Article  Google Scholar 

  15. Akbari Torkestani, J., Meybodi, M.R.: A learning automata-based cognitive radio for clustered wireless ad-hoc networks. J. Netw. Syst. Manag. 19, 278–297 (2011)

    Article  Google Scholar 

  16. Xu, Z., Sun, J.: Model-driven deep-learning. Natl. Sci. Rev. 5, 22–24 (2018)

    Article  Google Scholar 

  17. Tian, J., Pei, Y., Huang, Y., Liang, Y.: Modulation-constrained clustering approach to blind modulation classification for mimo systems. IEEE Trans. Cogn. Commun. Netw. 4, 894–907 (2018)

    Article  Google Scholar 

  18. Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K., Hanzo, L.: Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 24, 98–105 (2017)

    Article  Google Scholar 

  19. O’Shea, T., Hoydis, J.: An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 3, 563–575 (2017)

    Article  Google Scholar 

  20. Dörner, S., Cammerer, S., Hoydis, J., Brink, S.T.: Deep learning based communication over the air. IEEE J. Sel. Topics Signal Process. 12, 132–143 (2018)

    Article  Google Scholar 

  21. Wang, J., Jiang, C., Zhang, H., Ren, Y., Chen, K., Hanzo, L.: Thirty years of machine learning: the road to Pareto-optimal wireless networks. IEEE Commun. Surv. Tutor. 22, 1472–1514 (2020)

    Article  Google Scholar 

  22. Clancy, C., Hecker, J., Stuntebeck, E., O’Shea, T.: Applications of machine learning to cognitive radio networks. IEEE Wirel. Commun. 14, 47–52 (2007)

    Article  Google Scholar 

  23. Agarwal, A., Dubey, S., Khan, M.A., Gangopadhyay, R., Debnath, S.: Learning based primary user activity prediction in cognitive radio networks for efficient dynamic spectrum access. In: Proc. of SPCOM, pp. 1–5 (2016)

  24. Azmat, F., Chen, Y., Stocks, N.: Analysis of spectrum occupancy using machine learning algorithms. IEEE Trans. Veh. Technol. 65, 6853–6860 (2016)

    Article  Google Scholar 

  25. Tang, Y.J., Zhang, Q.Y., Lin, W.: Artificial neural network based spectrum sensing method for cognitive radio. In: Proc. of IEEE WiCOM, pp. 1–4 (2010)

  26. Vyas, M.R., Patel, D.K., López-Benítez, M.: Artificial neural network based hybrid spectrum sensing scheme for cognitive radio. In: Proc. Of IEEE PIMRC, pp. 1–7 (2017)

  27. Zhang, J., Wu, Y.: Likelihood-ratio tests for normality. Comput. Stat. Data Anal. 49, 709–721 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tian, J., Cheng, P., Chen, Z., Li, M., Hu, H., Li, Y., Vucetic, B.: A machine learning-enabled spectrum sensing method for OFDM systems. IEEE Trans. Veh. Technol. 68, 374–378 (2019)

    Google Scholar 

  29. Liu, C., Wang, J., Liua, X., Liang, Y.: Deep CM-CNN for spectrum sensing in cognitive radio. IEEE J. Sel. Areas Commun. 37, 2306–2321 (2019)

    Article  Google Scholar 

  30. Liu, C., Liu, X., Liang, Y.: Deep CNN for spectrum sensing in cognitive radio. In: Proc. of IEEE ICC, pp. 1–6 (2019)

  31. Xie, J., Liu, C., Liang, Y., Fang, J.: Activity pattern aware spectrum sensing: a CNN-based deep learning approach. IEEE Commun. Lett. 23, 1025–1028 (2019)

    Article  Google Scholar 

  32. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Proc. of Interspeech (2014)

  33. López, D., Rivas, E., Gualdrón, O.: Primary user characterization for cognitive radio wireless networks using a neural system based on deep learning. Artif. Intell. Rev. 52, 169–195 (2017)

    Article  Google Scholar 

  34. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  35. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:abs/1506.00019 (2015)

  36. Wang, J., Tang, J., Xu, Z., Wang, Y., Xue, G., Zhang, X., Yang, D.: Spatiotemporal modeling and prediction in cellular networks: a big data enabled deep learning approach. In: Proc. of IEEE INFOCOM, pp. 1–9 (2017)

  37. O’Shea, T.J., Hitefield, S., Corgan, J.: End-to-end radio traffic sequence recognition with recurrent neural networks. In: Proc. of IEEE Global SIP, pp. 277–281 (2016)

  38. Shawel, B.S., Woldegebreal, D.H., Pollin, S.: Convolutional LSTM based long-term spectrum prediction for dynamic spectrum access. In: Proc. of IEEE EUSIPCO, pp. 1–5 (2019)

  39. Yu, L., Chen, J., Ding, G.: Spectrum prediction via long short term memory. In: 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 643–647(2017).

  40. Rajendran, S., Meert, W., Giustiniano, D., Lenders, V., Pollin, S.: Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Trans. On Cog. Commn. Netw. 4, 433–445 (2018)

    Article  Google Scholar 

  41. Xie, J., Fang, J., Liu, C., Li, X.: Deep learning-based spectrum sensing in cognitive radio: a CNN-LSTM approach. IEEE Commun. Lett. 24, 2196–2200 (2020)

    Article  Google Scholar 

  42. Viswanathan, H., Mogensen, P.E.: Communications in the 6G era. IEEE Access 8, 57063–57074 (2020)

    Article  Google Scholar 

  43. Sarieddeen, H., Saeed, N., Al-Naffouri, T.Y., Alouini, M.: Next generation terahertz communications: a rendezvous of sensing, imaging, and localization. IEEE Commun. Mag. 58, 69–75 (2020)

    Article  Google Scholar 

  44. Patwary, M.N., Nawaz, S.J., Rahman, M.A., Sharma, S.K., Rashid, M.M., Barnes, S.J.: The potential short- and long-term disruptions and transformative impacts of 5G and beyond wireless networks: lessons learnt from the development of a 5G testbed environment. IEEE Access 8, 11352–11379 (2020)

    Article  Google Scholar 

  45. Letaief, K.B., Chen, W., Shi, Y., Zhang, J., Zhang, Y.J.A.: The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 57, 84–90 (2019)

    Article  Google Scholar 

  46. Yang, P., Xiao, Y., Xiao, M., Li, S.: 6G wireless communications: Vision and potential techniques. IEEE Netw. 33, 70–75 (2019)

    Article  MathSciNet  Google Scholar 

  47. Rappaport, T.S., Xing, Y., Kanhere, O., Ju, S., Madanayake, A., Mandal, S., Alkhateeb, A., Trichopoulos, G.C.: Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019)

    Article  Google Scholar 

  48. Seidel, S.Y., Rappaport, T.S.: 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Trans. Ant. Prop. 40, 207–217 (1992)

    Article  Google Scholar 

  49. Chu, Y., Fei, J., Hou, S.: Adaptive global sliding-mode control for dynamic systems using double hidden layer recurrent neural network structure. IEEE Trans. Neural Netw. Learn. Syst. 31, 1297–1309 (2020)

    Article  MathSciNet  Google Scholar 

  50. Taheri, F., Luong, C., Girgis, H., Dhungel, N., Abdi, A.H., Behnami, D., Gin, K., Rohling, R., Abolmausemi, P., Tsang, T.: Cardiac phase detection in echocardiograms with densely gated recurrent neural networks and global extrema loss. IEEE Trans. Med. Imag. 38, 1821–1832 (2019)

    Article  Google Scholar 

  51. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38, 280–290 (2019)

    Article  Google Scholar 

  52. Zhang, Y., Xin, D.: Dynamic optimization long short-term memory model based on data preprocessing for short-term traffic flow prediction. IEEE Access 8, 91510–91520 (2020)

    Article  Google Scholar 

  53. Rafi, S.H., Deeba, S.R., Hossain, E.: A short-term load forecasting method using integrated CNN and LSTM network. IEEE Access 9, 32436–32448 (2021)

    Article  Google Scholar 

  54. Nakisa, B., Rastgoo, M.N., Rakotonirainy, A., Maire, F., Chandran, V.: Long short term memory hyperparameter optimization for a neural network based emotion recognition framework. IEEE Access 6, 49325–49338 (2018)

    Article  Google Scholar 

  55. Mackenzie, J., Roddick, J.F., Zito, R.: An evaluation of HTM and LSTM for short-term arterial traffic flow prediction. IEEE Trans. Intell. Transport. Syst. 20, 1847–1857 (2019)

    Article  Google Scholar 

  56. Farsi, B., Amayri, M., Bouguila, N., Eicker, U.: On short-term load forecasting using machine learning techniques and a novel parallel deep LSTM-CNN approach. IEEE Access 9, 31191–31212 (2021)

    Article  Google Scholar 

  57. Zheng, J., Lin, D., Gao, Z., Wang, S., He, M., Fan, J.: Deep learning assisted efficient AdaBoost Algorithm for breast cancer detection and early diagnosis. IEEE Access 8, 96946–96954 (2020)

    Article  Google Scholar 

  58. Wang, K., Wang, Y., Zhao, Q., Meng, D., Liao, X., Xu, Z.: SPLBoost: an improved robust boosting algorithm based on self-paced learning. IEEE Trans. on Cyb. 51, 1556–1570 (2021)

    Article  Google Scholar 

  59. Kumar, M., Gupta, S., Gao, X., Singh, A.: Plant species recognition using morphological features and adaptive boosting methodology. IEEE Access. 7, 163912–163918 (2019)

    Article  Google Scholar 

  60. Zhu, Y., Xia, W., Yan, F., Shen, L.: NLOS identification via AdaBoost for wireless network localization. IEEE Commun. Lett. 23, 2234–2237 (2019)

    Article  Google Scholar 

  61. Lu, H., Gao, H., Ye, M., Wang, X.: A hybrid ensemble algorithm combining AdaBoost and Genetic Algorithm for cancer classification with gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 18, 863–870 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the help and support of the lab staff for providing the necessary infrastructure and the environment.

Funding

No Funding (Not applicable).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parnika Kansal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kansal, P., Gangadharappa, M. & Kumar, A. Long Boosted Memory Algorithm for Intelligent Spectrum Sensing in 5G and Beyond Systems. J Netw Syst Manage 30, 41 (2022). https://doi.org/10.1007/s10922-022-09652-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-022-09652-w

Keywords

Navigation