Skip to main content

Advertisement

Log in

Towards a Trustful Game-Theoretic Mechanism for Data Trading in the Blockchain-IoT Ecosystem

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

This paper introduces a data trading system based on the blockchain network, where a trusted data aggregator collects data from the Internet of Things (IoT) device owners and sells them in the format of different packages to multiple buyers. In this paper, we formulate infinitely repeated games between rational buyers that are competing with each other to obtain the required data records. Buyers update their bidding strategies to maximize their profits based on the outcome of previous games. We validate the existence and uniqueness of the Nash equilibrium in a one-shot game, finite, and infinitely repeated games. To ensure data owners’ privacy, a novel trust mechanism design is used to impede untruthful buyers to win the game. To prevent the use of a third party such as an auctioneer, all of these methods are implemented as smart contracts on the Hyperledger blockchain. We provide extensive analysis to demonstrate that the proposed system satisfies the properties of completeness, soundness, computationally efficiency, truthfulness, budget balance, and individual rationality. Lastly, we provide simulation experiments to demonstrate the performance of our blockchain network using different metrics, such as transaction throughput, latency, and resource consumption under different parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bebortta, S., Singh, A.K., Pati, B., Senapati, D.: A robust energy optimization and data reduction scheme for iot based indoor environments using local processing framework. J. Netw. Syst. Manage. 29(1), 1–28 (2021)

    Article  Google Scholar 

  2. International Data Corporation. The growth in connected iot devices is expected to generate 79.4zb of data in 2025, according to a new idc forecast. https://www.idc.com/getdoc.jsp?containerId=prUS45213219, 2020. Accessed 14 Dec 2020.

  3. Hassan, M.U., Rehmani, M.H., Chen, J.: Privacy preservation in blockchain based iot systems: Integration issues, prospects, challenges, and future research directions. Fut. Gener. Comput. Syst. 97, 512–529 (2019)

    Article  Google Scholar 

  4. Yassine, A., Shirmohammadi, S.: Privacy and the market for private data: a negotiation model to capitalize on private data. In: 2008 IEEE/ACS International Conference on Computer Systems and Applications, pp. 669–678. IEEE (2008)

  5. Opher, A., Chou, A., Onda, A., Sounderrajan, K.: The Rise of the Data Economy: Driving Value Through Internet of Things Data Monetization. IBM Corporation, Somers, NY (2016)

    Google Scholar 

  6. Rashid, Z., Noor, U., Altmann, J.: Economic model for evaluating the value creation through information sharing within the cybersecurity information sharing ecosystem. Fut. Gener. Comput. Syst. 124, 436 (2021)

  7. Rodrigues, B., Scheid, E., Killer, C., Franco, M., Stiller, B.: Blockchain signaling system (bloss): cooperative signaling of distributed denial-of-service attacks. J. Netw. Syst. Manage. 28(4), 953–989 (2020)

    Article  Google Scholar 

  8. Fernandez, R.C., Subramaniam, P., Franklin, M.J.: Data market platforms: trading data assets to solve data problems [vision paper]. arXiv, pp. arXiv–2002 (2020)

  9. Lopez, D., Farooq, B.: A multi-layered blockchain framework for smart mobility data-markets. Transp. Res. Part C: Emerg. Technol. 111, 588–615 (2020)

    Article  Google Scholar 

  10. Xiao, Y., Zhang, N., Li, J., Lou, W., Hou, Y.T.: Privacyguard: enforcing private data usage control with blockchain and attested off-chain contract execution. In: European Symposium on Research in Computer Security, pp. 610–629. Springer (2020)

  11. An, B., Xiao, M., Liu, A., Xu, Y., Zhang, X., Li, Q.: Secure crowdsensed data trading based on blockchain. IEEE Trans. Mobile Comput. (2021). https://doi.org/10.1109/TMC.2021.3107187

  12. Si, H., Sun, C., Li, Y., Qiao, H., Shi, L.: Iot information sharing security mechanism based on blockchain technology. Fut. Gener. Comput. Syst. 101, 1028–1040 (2019)

    Article  Google Scholar 

  13. Khezr, S., Benlamri, R., Yassine, A.: Blockchain-based model for sharing activities of daily living in healthcare applications. In: 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 627–633. IEEE (2020)

  14. Oh, H., Park, S., Lee, G.M., Choi, J.K., Noh, S.: Competitive data trading model with privacy valuation for multiple stakeholders in iot data markets. IEEE Internet Things J. 7(4), 3623–3639 (2020)

    Article  Google Scholar 

  15. Oh, H., Park, S., Lee, G.M., Heo, H., Choi, J.K.: Personal data trading scheme for data brokers in iot data marketplaces. IEEE Access 7, 40120–40132 (2019)

    Article  Google Scholar 

  16. Tian, L., Li, J., Li, W., Ramesh, B., Cai, Z.: Optimal contract-based mechanisms for online data trading markets. IEEE Internet Things J. 6(5), 7800–7810 (2019)

    Article  Google Scholar 

  17. Cao, X., Chen, Y., Liu, K.J.R.: Data trading with multiple owners, collectors, and users: an iterative auction mechanism. IEEE Trans. Signal Inf. Process. Netw. 3(2), 268–281 (2017)

    Article  MathSciNet  Google Scholar 

  18. Khokhar, R.H., Iqbal, F., Fung, B.C.M., Bentahar, J.: Enabling secure trustworthiness assessment and privacy protection in integrating data for trading person-specific information. IEEE Trans. Eng. Manage. 68, 149 (2020)

  19. Liu, K., Qiu, X., Wuhui Chen, X., Chen, Z.Z.: Optimal pricing mechanism for data market in blockchain-enhanced internet of things. IEEE Internet Things J. 6(6), 9748–9761 (2019)

  20. Li, Y., Li, L., Zhao, Y., Guizani, N., Yu, Y., Du, X.: Toward decentralized fair data trading based on blockchain. IEEE Netw. 35, 304 (2020)

  21. Sheng, D., Xiao, M., Liu, A., Zou, X., An, B., Zhang, S.: Cpchain: a copyright-preserving crowdsourcing data trading framework based on blockchain. In: 2020 29th International Conference on Computer Communications and Networks (ICCCN), pp. 1–9. IEEE (2020)

  22. Dai, W., Dai, C., Choo, K.K.R., Cui, C., Zou, D., Jin, H.: Sdte: A secure blockchain-based data trading ecosystem. IEEE Trans. Inf. Forensics Secur. 15, 725–737 (2019)

    Article  Google Scholar 

  23. Xiong, W., Xiong, L.: Smart contract based data trading mode using blockchain and machine learning. IEEE Access 7, 102331–102344 (2019)

    Article  Google Scholar 

  24. Thu, T., Hien, T., Almeida, M., Karame, G., Soriente, C.: Towards secure and decentralized sharing of iot data. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 176–183. IEEE (2019)

  25. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252. IEEE (2013)

  26. Zhang, Y., Deng, R.H., Shu, J., Yang, K., Zheng, D.: Tkse: Trustworthy keyword search over encrypted data with two-side verifiability via blockchain. IEEE Access 6, 31077–31087 (2018)

    Article  Google Scholar 

  27. Yassine, A., Shirehjini, A.A.N., Shirmohammadi, S.: Smart meters big data: Game theoretic model for fair data sharing in deregulated smart grids. IEEE Access 3, 2743–2754 (2015)

    Article  Google Scholar 

  28. Boyd, S., Boyd S.P., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  29. Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I., Han, Z.: Applications of repeated games in wireless networks: a survey. IEEE Commun. Surv. Tutor. 17(4), 2102–2135 (2015)

    Article  Google Scholar 

  30. Levine, D.K.: Learning in games (2001)

  31. Fudenberg, D., Levine, D.: Learning in games. Eur. Econ. Rev. 42(3–5), 631–639 (1998)

    Article  Google Scholar 

  32. Leyton-Brown, K., Shoham, Y.: Essentials of game theory: a concise multidisciplinary introduction. Synth. Lect. Artif. Intell. Mach. Learn. 2(1), 1–88 (2008)

    Article  Google Scholar 

  33. Dasgupta, P., Maskin, E.: The existence of equilibrium in discontinuous economic games, i: theory. Rev. Econ. Stud. 53(1), 1–26 (1986)

    Article  MathSciNet  Google Scholar 

  34. Wang, Y., Saad, W., Han, Z., Poor, H.V., Başar, T.: A game-theoretic approach to energy trading in the smart grid. IEEE Trans. Smart Grid 5(3), 1439–1450 (2014)

    Article  Google Scholar 

  35. Yates, R.D.: A framework for uplink power control in cellular radio systems. IEEE J. Sel. Areas Commun. 13(7), 1341–1347 (1995)

    Article  Google Scholar 

  36. Sorin, S.: On repeated games with complete information. Math. Oper. Res. 11(1), 147–160 (1986)

    Article  MathSciNet  Google Scholar 

  37. Laraki, R., Renault, J., Sorin, S.: Mathematical Foundations of Game Theory. Springer, Berlin (2019)

  38. Das, A., Islam, M.M.: Securedtrust: a dynamic trust computation model for secured communication in multiagent systems. IEEE Trans. Depend. Secur. Comput. 9(2), 261–274 (2011)

    Article  Google Scholar 

  39. Hyperledger.org. Hyperledger caliper: a blockchain performance benchmark framework. https://github.com/hyperledger/caliper (2021). Accessed 26 Aug 2021

  40. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct nizks without pcps. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 626–645. Springer (2013)

  41. Graf, M., Küsters, R., Rausch, D.: Accountability in a permissioned blockchain: formal analysis of hyperledger fabric. In: 2020 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 236–255. IEEE (2020)

  42. Liu, D., Ni, J., Huang, C., Lin, X., Shen, X.S.: Secure and efficient distributed network provenance for iot: A blockchain-based approach. IEEE Internet Things J. 7(8), 7564–7574 (2020)

    Article  Google Scholar 

  43. Hyperledger Performance, Scale Working Group, et al.: Hyperledger blockchain performance metrics. Hyperledger. org, pp. 1–17 (2018)

Download references

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyednima Khezr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezr, S., Yassine, A. & Benlamri, R. Towards a Trustful Game-Theoretic Mechanism for Data Trading in the Blockchain-IoT Ecosystem. J Netw Syst Manage 30, 56 (2022). https://doi.org/10.1007/s10922-022-09669-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-022-09669-1

Keywords