Skip to main content

Advertisement

Log in

QoS-Aware Task Offloading in Fog Environment Using Multi-agent Deep Reinforcement Learning

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

With the surge of intelligent devices, applications of Internet of Things (IoT) are growing at a rapid pace. As a result, a massive amount of raw data is generated, which must be processed and stored. IoT devices standalone are not enough to handle large amount of data. Hence, to improve the performance, users started to push some jobs to far-situated cloud data centers, which would lead to more complications such as high bandwidth usage, service latency, and energy consumption. Fog computing emerges as a key enabling technology that brings cloud services closer to the end-user. However, owing to the unpredictability of tasks and Quality of Service (QoS) requirements of users, efficient task scheduling and resource allocation mechanisms are needed to balance the demand. To handle the problem efficiently, we have designed the task offloading problem as Markov Decision Process (MDP) by considering various user QoS factors including end-to-end latency, energy consumption, task deadline, and priority. Three different model-free off-policy Deep Reinforcement Learning (DRL) based solutions are outlined to maximize the reward in terms of resource utilization. Finally, extensive experimentation is conducted to validate and compare the efficiency and effectiveness of proposed mechanisms. Results show that with the proposed method, on average 96.23% of tasks can satisfy the deadline with an 8.25% increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Gupta, A., Singh, A.: An intelligent healthcare cyber physical framework for encephalitis diagnosis based on information fusion and soft-computing techniques. New Gener. Comput. (2022). https://doi.org/10.1007/s00354-022-00175-1

    Article  Google Scholar 

  2. Natesha, B., Guddeti, R.M.R.: Meta-heuristic based hybrid service placement strategies for two-level fog computing architecture. J. Netw. Syst. Manage. 30(3), 1–23 (2022)

    Article  Google Scholar 

  3. Jing, W., Zhao, C., Miao, Q., Song, H., Chen, G.: Qos-dpso: Qos-aware task scheduling for cloud computing system. J. Netw. Syst. Manage. 29(1), 1–29 (2021)

    Article  Google Scholar 

  4. Talaat, F.M., Ali, S.H., Saleh, A.I., Ali, H.A.: Effective load balancing strategy (elbs) for real-time fog computing environment using fuzzy and probabilistic neural networks. J. Netw. Syst. Manage. 27(4), 883–929 (2019)

    Article  Google Scholar 

  5. Singh, P., Singh, R.: Energy-efficient delay-aware task offloading in fog-cloud computing system for iot sensor applications. J. Netw. Syst. Manage. 30(1), 1–25 (2022)

    Article  Google Scholar 

  6. Adhikari, M., Mukherjee, M., Srirama, S.N.: Dpto: a deadline and priority-aware task offloading in fog computing framework leveraging multilevel feedback queueing. IEEE Internet Things J. 7(7), 5773–5782 (2019)

    Article  Google Scholar 

  7. Sun, W., Liu, J., Yue, Y., Zhang, H.: Double auction-based resource allocation for mobile edge computing in industrial internet of things. IEEE Trans. Ind. Inform. 14(10), 4692–4701 (2018)

    Article  Google Scholar 

  8. Alli, A.A., Alam, M.M.: Secoff-fciot: machine learning based secure offloading in fog-cloud of things for smart city applications. Internet Things 7, 100070 (2019)

    Article  Google Scholar 

  9. Xiao, Y., Krunz, M.: Qoe and power efficiency tradeoff for fog computing networks with fog node cooperation. In: IEEE INFOCOM 2017-IEEE conference on computer communications, pp. 1–9. IEEE (2017)

  10. Ning, Z., Dong, P., Kong, X., Xia, F.: A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things. IEEE Internet Things J. 6(3), 4804–4814 (2018)

    Article  Google Scholar 

  11. Zhou, Z., Liao, H., Gu, B., Mumtaz, S., Rodriguez, J.: Resource sharing and task offloading in iot fog computing: a contract-learning approach. IEEE Trans. Emerg. Top. Comput. Intell. 4(3), 227–240 (2019)

    Article  Google Scholar 

  12. Pu, L., Chen, X., Xu, J., Fu, X.: D2d fogging: an energy-efficient and incentive-aware task offloading framework via network-assisted d2d collaboration. IEEE J. Sel. Areas Commun. 34(12), 3887–3901 (2016)

    Article  Google Scholar 

  13. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource allocation in three-tier iot fog networks: a joint optimization approach combining stackelberg game and matching. IEEE Internet Things J. 4(5), 1204–1215 (2017)

    Article  Google Scholar 

  14. Gao, X., Huang, X., Bian, S., Shao, Z., Yang, Y.: Pora: Predictive offloading and resource allocation in dynamic fog computing systems. IEEE Internet Things J. 7(1), 72–87 (2019)

    Article  Google Scholar 

  15. Vu, T.T., Nguyen, D.N., Hoang, D.T., Dutkiewicz, E., Nguyen, T.V.: Optimal energy efficiency with delay constraints for multi-layer cooperative fog computing networks. IEEE Trans. Commun. 69(6), 3911–3929 (2021)

    Article  Google Scholar 

  16. Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S., Zhang, Y.: Energy-efficient offloading for mobile edge computing in 5g heterogeneous networks. IEEE Access 4, 5896–5907 (2016)

    Article  Google Scholar 

  17. Jiao, L., Wu, Y., Dong, J., Jiang, Z.: Toward optimal resource scheduling for internet of things under imperfect csi. IEEE Internet Things J. 7(3), 1572–1581 (2019)

    Article  Google Scholar 

  18. Haghi Kashani, M., Rahmani, A.M., Jafari Navimipour, N.: Quality of service-aware approaches in fog computing. Int. J. Commun. Syst. 33(8), 4340 (2020)

    Article  Google Scholar 

  19. Sun, W., Liu, J., Yue, Y., Wang, P.: Joint resource allocation and incentive design for blockchain-based mobile edge computing. IEEE Trans. Wirel. Commun. 19(9), 6050–6064 (2020)

    Article  Google Scholar 

  20. Rahbari, D., Nickray, M.: Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Netw. Appl. 13(1), 104–122 (2020)

    Article  Google Scholar 

  21. Misra, S., Saha, N.: Detour: dynamic task offloading in software-defined fog for iot applications. IEEE J. Sel. Areas Commun. 37(5), 1159–1166 (2019)

    Article  Google Scholar 

  22. Rahman, F.H., Au, T.-W., Newaz, S.S., Suhaili, W.S., Lee, G.M.: Find my trustworthy fogs: a fuzzy-based trust evaluation framework. Future Gener. Comput. Syst. 109, 562–572 (2020)

    Article  Google Scholar 

  23. Yang, L., Li, M., Zhang, H., Ji, H., Xiao, M., Li, X.: Distributed resource management for blockchain in fog-enabled iot networks. IEEE Internet Things J. 8(4), 2330–2341 (2020)

    Article  Google Scholar 

  24. Yu, Y., Bu, X., Yang, K., Wu, Z., Han, Z.: Green large-scale fog computing resource allocation using joint benders decomposition, dinkelbach algorithm, admm, and branch-and-bound. IEEE Internet Things J. 6(3), 4106–4117 (2018)

    Article  Google Scholar 

  25. Fan, Q., Ansari, N.: Towards workload balancing in fog computing empowered iot. IEEE Trans. Netw. Sci. Eng. 7(1), 253–262 (2018)

    Article  Google Scholar 

  26. Jain, V., Kumar, B.: Blockchain enabled trusted task offloading scheme for fog computing: a deep reinforcement learning approach. Trans. Emerg. Telecommun. Technol. (2022). https://doi.org/10.1002/ett.4587

    Article  Google Scholar 

  27. Jain, V., Kumar, B.: Combinatorial auction based multi-task resource allocation in fog environment using blockchain and smart contracts. Peer-to-Peer Netw. Appl. 14(5), 3124–3142 (2021)

    Article  Google Scholar 

  28. Liu, L., Qi, D., Zhou, N., Wu, Y.: A task scheduling algorithm based on classification mining in fog computing environment. Wirel. Commun. Mob. Comput. (2018). https://doi.org/10.1155/2018/2102348

    Article  Google Scholar 

  29. Rahbari, D., Nickray, M.: Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Netw. Appl. 13(1), 104–122 (2020). https://doi.org/10.1007/s12083-019-00721-7

    Article  Google Scholar 

  30. Abbasi, M., Yaghoobikia, M., Rafiee, M., Jolfaei, A., Khosravi, M.R.: Efficient resource management and workload allocation in fog-cloud computing paradigm in iot using learning classifier systems. Comput. Commun. 153, 217–228 (2020)

    Article  Google Scholar 

  31. Shahidinejad, A., Ghobaei-Arani, M.: Joint computation offloading and resource provisioning for e dge-cloud computing environment: a machine learning-based approach. Softw.: Pract. Exp. 50(12), 2212–2230 (2020)

    Google Scholar 

  32. Baek, J., Kaddoum, G.: Heterogeneous task offloading and resource allocations via deep recurrent reinforcement learning in partial observable multifog networks. IEEE Internet Things J. 8(2), 1041–1056 (2020)

    Article  Google Scholar 

  33. Baek, J.-Y., Kaddoum, G., Garg, S., Kaur, K., Gravel, V.: Managing fog networks using reinforcement learning based load balancing algorithm, pp. 1–7. IEEE (2019)

  34. Sun, Y., Peng, M., Mao, S.: Deep reinforcement learning-based mode selection and resource management for green fog radio access networks. IEEE Internet Things J. 6(2), 1960–1971 (2018)

    Article  Google Scholar 

  35. Rahman, G.S., Dang, T., Ahmed, M.: Deep reinforcement learning based computation offloading and resource allocation for low-latency fog radio access networks. Intell. Converg. Netw. 1(3), 243–257 (2020)

    Article  Google Scholar 

  36. Cui, G., Long, Y., Xu, L., Wang, W.: Joint offloading and resource allocation for satellite assisted vehicle-to-vehicle communication. IEEE Syst. J. 15(3), 3958–3969 (2020)

    Article  Google Scholar 

  37. Yu, L., Wang, R., Shi, M., Wu, J.: Dynamic offloading design in time-varying mobile edge networks with deep reinforcement learning approach. (2021). arXiv preprint arXiv:2103.02174

  38. Zou, B., Shen, J., Huang, Z., Zheng, S., Zhang, J., Li, W.: Service offloading algorithm based on depth deterministic policy gradient in fog computing environment. In: International conference on computer engineering and networks, pp. 1456–1465. Springer (2020)

  39. Wei, Y., Yu, F.R., Song, M., Han, Z.: Joint optimization of caching, computing, and radio resources for fog-enabled iot using natural actor-critic deep reinforcement learning. IEEE Internet Things J. 6(2), 2061–2073 (2018)

    Article  Google Scholar 

  40. Huang, X., Cui, Y., Chen, Q., Zhang, J.: Joint task offloading and qos-aware resource allocation in fog-enabled internet-of-things networks. IEEE Internet Things J. 7(8), 7194–7206 (2020)

    Article  Google Scholar 

  41. Wang, S., Li, X., Sheng, Q.Z., Beheshti, A.: Performance analysis and optimization on scheduling stochastic cloud service requests: a survey. IEEE Trans. Netw. Serv. Manage. (2022). https://doi.org/10.1109/TNSM.2022.3181145

    Article  Google Scholar 

  42. Xiang, Y., Lan, T., Aggarwal, V., Chen, Y.-F.: Optimizing differentiated latency in multi-tenant, erasure-coded storage. IEEE Trans. Netw. Serv. Manage. 14(1), 204–216 (2017)

    Article  Google Scholar 

  43. Di Mauro, M., Liotta, A.: Statistical assessment of ip multimedia subsystem in a softwarized environment: a queueing networks approach. IEEE Trans. Netw. Serv. Manage. 16(4), 1493–1506 (2019)

    Article  Google Scholar 

  44. Jain, V., Kumar, B., Gupta, A.: Cybertwin-driven resource allocation using deep reinforcement learning in 6g-enabled edge environment. J. King Saud Univ.-Comput. Inf. Sci. (2022). https://doi.org/10.1016/j.jksuci.2022.02.005

    Article  Google Scholar 

  45. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)

    Article  Google Scholar 

  46. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J., et al.: An introduction to deep reinforcement learning. Found. Trends Mach. Learn. 11(3–4), 219–354 (2018)

    Article  MATH  Google Scholar 

  47. Huang, Y.: Deep q-networks. In: Deep reinforcement learning, pp. 135–160. Springer, Singapore (2020)

    Chapter  Google Scholar 

  48. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. (2015). arXiv preprint arXiv:1509.02971

  49. Deep Deterministic Policy Gradient—Spinning Up documentation. https://spinningup.openai.com/en/latest/algorithms/ddpg.html. Accessed 14 May 2021

  50. Soft Actor-Critic—Spinning Up documentation. https://spinningup.openai.com/en/latest/algorithms/sac.html. Accessed 14 May 2021

  51. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor, pp. 1861–1870. PMLR (2018)

  52. Tran, T.X., Pompili, D.: Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE Trans. Veh. Technol. 68(1), 856–868 (2018)

    Article  Google Scholar 

  53. Yousefpour, A., Ishigaki, G., Gour, R., Jue, J.P.: On reducing iot service delay via fog offloading. IEEE Internet things J. 5(2), 998–1010 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Jain.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author declares that there is no conflict of interest involved in conducting this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V., Kumar, B. QoS-Aware Task Offloading in Fog Environment Using Multi-agent Deep Reinforcement Learning. J Netw Syst Manage 31, 7 (2023). https://doi.org/10.1007/s10922-022-09696-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-022-09696-y

Keywords

Navigation