
Vol.:(0123456789)

Journal of Network and Systems Management (2023) 31:14
https://doi.org/10.1007/s10922-022-09702-3

1 3

Empowering SDN‑Docker Based Architecture for Internet
of Things Heterogeneity

Intidhar Bedhief1 · Meriem Kassar1 · Taoufik Aguili1

Received: 19 January 2022 / Revised: 13 September 2022 / Accepted: 27 October 2022 /
Published online: 22 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Internet of Things (IoT), an emerging technology, connects billions of smart devices
to the Internet through heterogeneous communication technologies enabling novel
services and applications. This complex and variable environment encounters sev-
eral challenges such as managing and controlling the network and IoT applications,
programming IoT devices, responding to some specific Quality of Service require-
ments of certain applications. The current IoT network based on the complex, static,
and closed traditional architecture represents a serious concern, especially with the
amounts of data generated from the huge and heterogeneous IoT devices. In this
paper, we present a new model for IoT architecture that brings together the ben-
efits of Software Defined Networking (SDN) architecture and containerization (i.e.,
Docker) to address most IoT challenges and abstract the underlying communication
and hardware subsystem. The SDN concept decoupled the control plane from data
plane which implies a centralized global network view and provides flexibility in
network configuration and resource management. Moreover, containerization tech-
nique through the docker in the device brings the portability and scalability of the
applications. First, we propose, an SDN-based architecture for IoT. Then, with light-
weight virtualization of IoT device supplied by Docker, we empower the function-
alities and effectiveness of the SDN based architecture solution to challenge the IoT
heterogeneity. Furthermore, we use the smart supermarket as a use case to validate
our SDN-Docker based architecture in a real IoT scenario. The experimental results
validate the architecture implementation.

Keywords Internet of Things (IoT) · Software defined networking (SDN) ·
Containerization · Docker · Scalability · Heterogeneity · Architecture · Smart
supermarket · Virtualization

 * Intidhar Bedhief
 Intidhar.Bedhief@enit.utm.tn

Extended author information available on the last page of the article

http://orcid.org/0000-0001-7921-2572
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-022-09702-3&domain=pdf

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 2 of 29

1 Introduction

The Internet of Things has created a digital revolution by connecting all existing
things around us to the Internet emerging novel applications and services. The
thing varied from laptops, smart-phone, home appliances, surveillance equipment,
industrial system, e-health device, to any sensor and actuator that can be geographi-
cally anywhere and connected over any wireless communication technology such
as Bluetooth, ZigBee, WiFi, or cellular network at any time [1]. The spread of IoT
smart devices integrated with their abilities of sensing, computing, and communi-
cating in real time is making every aspect of human life smarter and more efficient;
such as the shopping experience that becomes seamless thanks to the IoT. Thus, we
can either have a virtual shopping experience ended by getting all you need to your
home without getting out or moving from the chair. Otherwise, we go to the super-
market, get a real smart shopping experience, and at the end, we just walk out. The
last experience is guaranteed due to the widespread cameras and sensors that detect
and transmit data to the system that charges us while we walking out.

The IoT devices (cameras, sensors, etc.) are connected to each other and to the
Internet in order to exchange data. The connection could be maintained for a limited
period of time while providing specific services. The IoT environment has a very
dynamic topology and scale network. Consequently, IoT needs a flexible network
architecture. As well, the amount of data generated and traffic represents a major
bottleneck for the network. In addition, the heterogeneity, complexity, and proprie-
ties limitation that characterize the devices represents an issue for management and
performance optimization of the network. The traditional network devices are verti-
cally integrated: the control and data planes are coupled and embedded in the same
network device. Therefore, the integration of new networking features can be harder.
So, the traditional network architecture that seems to be rigid, complex, and closed
can not be a solution even with the introduction of a structure as a “gateway” [2].
In fact, the deployment of a huge number of IoT devices, with different designs and
protocols in a complex environment, increases problems of mismatch in protocols
and capabilities that affect applications. Sequentially, the application needs to be
scalable and efficient especially, for the real-time type. So, to meet the IoT require-
ments in terms of heterogeneity, flexibility, and interoperability, a new architec-
ture vision is needed. Researchers focused on recent technologies such as Software
Defined Networking (SDN) or containerization (e.g., Docker) as potential solutions.

SDN is an emerging technology that guarantees network flexibility and agility
answering IoT requirements in terms of heterogeneity and flexibility. The SDN con-
cept of decoupling the network control plane from the data plane enables the net-
work programmability and centralizes the network control providing a global view.
The direct programmability of the network allows to configure, manage, optimize,
and secure the forwarding devices dynamically. Docker is the container technology
that allows developers to isolate their applications from their environment and gives
them the ability to innovate with their chosen tools, application stacks, and deploy-
ment environments. Hence, Docker is a lightweight approach that provides portabil-
ity for developers to create and deploy an application without complexity.

1 3

Journal of Network and Systems Management (2023) 31:14 Page 3 of 29 14

On one hand, SDN has been used along with IoT in various studies [3–5] address-
ing different IoT challenges related to the network performance optimization. On the
other hand, Docker has been used with IoT devices especially the gateway taking
advantage of the application portability and scalability [6–8]. In literature, the two
technologies are used separately for IoT. We considered, in our previous work [9], a
first idea that introduces the concept of combining them together in the IoT architec-
ture. However, several questions arise when applying SDN and Docker in IoT. It is
important to identify the IoT challenges that emerge the integration of new technolo-
gies in the IoT architecture. Secondly, it is a key to specify the need of SDN for IoT
and answers the questions of why SDN for IoT and what it brings to IoT. Thirdly, it
is crucial to identify the needs of docker with SDN for IoT. In this paper, in order
to answer all those questions, we study the effectiveness of SDN-Docker architec-
ture for IoT heterogeneity; and we test it in the smart supermarket use case. Further,
firstly, we reveal the main IoT challenges. Secondly, we give an overview of the two
technologies SDN and Docker. Then, we propose an SDN-based architecture for
IoT. Finally, we describe and evaluate it.

The rest of the paper is organized as follows. Section 2 provides a background
on IoT challenges and the network softwarization techniques such as SDN and the
dockerization. Also, it reviews the state of the art of integration SDN and IoT in a
first part and IoT and Docker in the second one. Section 3 describes our proposed
SDN-Docker based architecture for IoT. Section 4 describes the implementation of
our proposed architecture in the case of a smart supermarket and evaluates its per-
formances. Section 5 concludes our paper.

2 Background and Related Work

In this section, we firstly present the IoT general characteristics and issues. Sec-
ondly, we introduce the softwarization techniques (i.e., SDN and Docker) as well
as their related research to IoT. Finally, we discuss related researches on SDN and
Docker for IoT.

2.1 IoT Challenges

With technology evolution (Web service, Cloud, ICN (Information-Centric Net-
working), etc.) and the integration of IoT in various domains, many definitions have
been released by different organizations and researchers describing the concept of
IoT. Although the variety of its definition, some common features of the IoT system
have been pointed out: the variety of the “thing” (physical object or virtual entity),
interconnection of things, the network ubiquity (i.e., availability of the network
“anytime” and “anywhere”), and heterogeneity of communication technologies.

The IoT system is made up of very heterogeneous and resource-constrained
embedded devices. It is mainly characterized by the heterogeneity that can be pre-
sent in devices, networks, applications, services, and/or data. IoT devices can have
heterogeneous architecture, they can be based on different MCU (MicroController

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 4 of 29

Unit) architecture (e.g., Intel 8051/52, ARM, x86, AMD64) and system resources.
They are equipped with at least one network interface and they can come up with
different networking communication technologies (e.g., WiFi, 4G/LTE, Ethernet,
5G, etc.) [10]. Besides, the network connectivity of the IoT system is dynamically
variable: The IoT network composes of a huge number of devices where some are
always connected while others connect and disconnect for a period of time. This is
due to energy saving or variable network conditions. Likewise, the running appli-
cations are various and dynamic in terms of latency, bandwidth, and deployment
environment. All of the above characteristic remarks have led to the huge advance-
ment of IoT services and applications, but also reveal many problems that could be
summarized in heterogeneity. Here, the main challenge is finding flexible layered
architecture that handles billions or trillion of connecting devices and their dynamic
topology. Hence, heterogeneity can be accompanied by flexibility and interopera-
bility challenges for an IoT environment. It is therefore challenging to manage the
network and control the huge and heterogeneous number of devices that exchange
various information through heterogeneous communication protocols. Also, the
IoT system has to be able to add new devices, services, and functions for customers
without negatively affecting the quality of existing network services, which is a chal-
lenge. The main IoT challenges are cited in Table 1.

2.2 Software‑Defined Networking for IoT

In traditional network architecture, the network device hardware that is responsible
for the connectivity is built along with the controller, as shown in Fig. 1a, that con-
tains the forwarding rules. This design was considered early the best way to guaran-
tee network resilience, as a crucial design goal [11]. In today’s existing communica-
tion network, the control plane needs to be managed anytime from anywhere. So, for
a dynamic, large, and complex network such as the IoT network, the model with a
static architecture could not fit the previously mentioned requirements.

Instead, SDN architecture, shown in Fig. 1b, separates the network control from
the data forwarding functions in order to make network management more flexible.
Figure 1 highlights the difference between the two architectures. SDN enables the
networking devices on the data plane to be dynamically controlled and configured

Table 1 IoT challenges

Challenges Description

Heterogeneity Management of various devices/services/technologies
Scalability Ability to add new devices, services, and function
Security Protection mechanism that provides privacy, integrity, confidentiality,

and authenticity
Interoperability Interaction and communication between various technologies
QoS Guarantee IoT application and service QoS (bandwidth, latency,)
Flexibility Dynamic management and configuration of IoT devices

1 3

Journal of Network and Systems Management (2023) 31:14 Page 5 of 29 14

by the controllers on the control plane. Network applications (i.e., routing, switch-
ing, monitoring, firewalls, load balancing, etc.), in the Application layer, can be pro-
grammed and managed by SDN controller through the Northbound API (ex. REST
API). The Control layer is decoupled from the Data layer and it is logically central-
ized having a global view of the whole network. The controller can be one physical
entity or multiple entities (i.e., physically distributed). Then, the controller guides
the network devices to forward the packets or flows through the Southbound API
(ex. OpenFlow).

Splitting the control and the data plane gives the flexibility, dynamicity, and cost-
effectiveness to the network architecture to adapt to today’s applications such as IoT
applications [12]. Indeed, SDN architecture enables a global view of the entire net-
work, including its resources. Besides, it improves the network flexibility through
programmability i.e., new network services can be provided, the priority of packets
can be detected or even block it [13].

Integrating SDN in the IoT architecture has been proposed as a solution to resolve
traditional network issues and network management optimization by many research-
ers. Several papers [3–5] have surveyed the integration of SDN in IoT in many per-
spectives. In our paper, we discuss works that considered such integration on hetero-
geneity and architecture challenges. The discussed solutions can be arranged in two
sets: the first one focuses on the SDN controller [14–16]. The second one proposed
instead a framework [17–19].

Regarding the first approach, Wu et al [14] proposed Ubiflow, the first software
defined IoT system which uses a decentralized SDN controller for flow control and
mobility management in urban multi-network. It divides an urban scale into different

(a) (b)

Fig. 1 Traditional vs SDN network architecture

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 6 of 29

geographic partitions controlled by a physically distributed SDN controller. Also,
the authors, in their paper [15], presented an original SDN controller design in IoT
multi-network that enables flexible, effective, and efficient management on task,
flow, network, and resources. Martinez et al. [16] proposed an SDN based architec-
ture for heterogeneous devices connecting with each other using IPv6 and creating
an IoT controller over the SDN controller in order to simplify the management.

The second approach used a framework such as SDIoT, a software defined
based framework for IoT in order to challenge traditional system architecture [17].
Huang et al. [18] proposed a framework to manage and control the IoT network by
exploiting the benefits of SDN. The proposed framework focused on Machine to
Machine (M2M) transactions. The authors of the paper [19] proposed a framework
called SHIOT that classifies the incoming user requests based on an open ontology.
SHIOT utilizes the Lagrange relaxation theory to find the optimal path to forward
the requests to the destination nodes.

SDN plays an essential role in the management of heterogeneous network. But,
applying only SDN in IoT is it enough to overcome the previously mentioned issues?
Some researchers empower SDN with NFV such as the contribution of Ojo and al.
[20]. Tomovic and al. propose a Fog node solution along with SDN to solve the IoT
challenges [21]. In this paper, we propose an SDN-Docker based architecture for
IoT, presented in Sect. 3 and evaluated in Sect. 4.

2.3 Dockerization for IoT

Containerization is an operating-system-level virtualization concept that packages
an application and all its dependencies, configurations, and other details to be eas-
ily deployed. So, it runs rapidly and reliably from one computing environment to
another [22]. Containers and hypervisors (i.e., virtual machines) are both two vir-
tualization techniques that share the same benefits of resource isolation and alloca-
tion, but they provide different abstraction levels regarding virtualization and isola-
tion. Hypervisor virtualizes hardware and device drivers providing an abstraction
of physical hardware. Thus, it generates a higher overhead. As shown in Fig. 2b,
the entire guest OS (Operating System) is virtualized on a host OS enabling the
simple use of several OSs and making the operating environment heavy and slow.
In contrast, containers provide an abstraction at the application layer avoiding such
overhead by implementing process isolation at the operating system level. A single
container instance combines the application with all its dependencies as shown in
Fig. 2a. It runs as an isolated process in user space on the host OS, while the OS
kernel is shared among all the containers [23].

In our proposed architecture, we will apply Docker, as a container-based virtual-
ization platform [22] that provides portability for developers to develop, deploy, and
run applications without complexity. Since docker virtualizes the OS without adding
overhead, it provides an easier and faster way to deploy IoT applications. It offers
portability through packaging applications with the necessary resources. Docker
containers are created using base images that can include just the OS fundamentals,
or it can consist of a sophisticated pre-built application stack ready for launch. When

1 3

Journal of Network and Systems Management (2023) 31:14 Page 7 of 29 14

building images with Docker, each action taken (i.e., command executed, such as
apt-get install) forms a new layer on top of the previous one. Commands can be
executed manually or automatically using Dockerfiles. Each Dockerfile is a script
composed of various commands (instructions) and arguments listed successively to
automatically perform actions on a base image to create a new image.

Container-based virtualization through Docker has been applied to the IoT. It was
proposed in order to get over the deployment issues especially for distributed appli-
cations and to utilize its advantages in terms of portability of services and applica-
tions. Firstly, some works [24–26]studied the impact of running docker container
on IoT devices in terms of performance. Morabito et al. [24] compared the perfor-
mances of a running docker on a Raspberry Pi 2 to native performance (i.e., with-
out including any virtualization layer) in terms of CPU, Memory I/O, Disk I/O, and
Network I/O. They concluded that the impact of the container virtualization layer is
almost negligible. In another paper [26], one of the previous authors extended the
work in a way that he analyzed in depth the performance of running docker on Rasp-
berry Pi 3, Odroid C1+, Odroid C2, and Odroid XU4. Also, Ruchika [25] evalu-
ated the performances of running IoT applications in a container and over the host
aiming at proving the ability of container technology to satisfy the requirement of
the IoT application. In a second step, there were researches that proposed docker
technology for IoT edge and gateway to alleviate its functionalities. Xu et al. [8]
proposed an architectural design and the implementation of docker-based framework
for SDN switch. The framework enabled auto-docking/undocking of applications at
the edge switches and managed the storage, computing, and networking resources
of the switch. Also, Morabito et al. [6] presented and tested a Lightweight Edge
Gateway for the Internet of Things (LEGIoT) architecture that enhances basic gate-
way features through two different virtualized modules: one charged the communi-
cation with the Internet and the other managed the exchanges with sensors. Alam

(a) (b)

Fig. 2 Container vs Hypervisor based architecture

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 8 of 29

et al. [7] proposed a modular and layered architecture that oers containerized ser-
vices and micro-services. The modularity and the orchestration in the architecture
that is supplied by Docker, simplified the management and enabled the distributed
deployments.

As it can be seen, according to the mentioned works, the Docker technology is
used along with IoT devices especially in the Edge thanks to its potentiality in the
field of distributed applications and data processing services.

2.4 Related Work

SDN has been proposed, mostly, as a solution to resolve traditional network issues
and network management optimization for IoT networks [27]. Similarly, Docker is
used all along with Fog and Edge nodes thanks to its advantages in terms of portabil-
ity of services and applications. However, SDN and Docker have been also applied
together in IoT for network management issues. Authors in their paper [28] proposed
Aloe, an SDN control plane orchestration framework for IoT. The proposed frame-
work uses a Docker container to support lightweight migration capable in-band con-
trollers. Furthermore, Yang et al. [29] propose a simulation experiment platform for
the IoT called ImuLab. The imuLab platform is based on OpenStack, containers, and
the existing IoT emulator (VMNet). Besides, Okwuibe et al. in [30] study the energy
and latency trade-offs obtained by combining various technologies (SDN, Edge,
IIoT, and Docker). Also, in [31], they propose an approach called SDRM (Software
Defined Resource Management) that manages dynamically resources for IIoT and
proposes an integration of SDN along with edge and cloud computing. The work
[32] proposes an IoT-aware multilayer transport software defined networking and
edge/cloud orchestration architecture.

Florita et al. [33] proposed a resilient system that is dependent on SDN and con-
tainer to ensure the reliability and functionality of IoT devices when internet access
is inconsistent or slow. Fawwaz et al. [34] proposed a distributed MQTT broker for
edge resources to reduce network traffic and data delivery latency. Authors [35] pro-
pose CRMS (Cloudless Resource Monitoring System), a self-configuration orches-
trator for advanced IoT applications. The proposed system can monitor the different
performance aspects of the resource allocation among multiple hosts of a fog com-
puting system interconnected by SDN. Bolatti et al. [36] propose a portable IoT net-
work monitoring system using Docker container and bridge networking with SDN.

In the previously cited related work, Docker is mostly used to enhance the scal-
ability of the SDN control plane and the edge layer in order to optimize the IoT envi-
ronment performances.

1 3

Journal of Network and Systems Management (2023) 31:14 Page 9 of 29 14

3 SDN‑Docker Based Architecture for IoT

In this section, to address IoT challenges previously cited, we propose a new
architecture for IoT based on two described technologies: SDN and Docker. First,
we present our general SDN-based architecture for IoT. Then, we add the docker
to our architecture.

3.1 SDN‑Based Architecture for IoT

Our main objective for developing the IoT architecture is to enhance the flexibility
and programmability of the network and so it will be easier to introduce new IoT
devices and services. Moreover, IoT architectures have been defined to bring the
necessary flexibility to interconnect heterogeneous devices. Several architectural
models have been presented in the literature. The basic model is a three-layer
consisting of Perception, Network, and Application Layers. However, in recent
works, some other models, where they introduce the middleware layer between
the network and application layer and five-layers model that contains objects,
objects abstraction, service management, application, and business layers, have
been proposed in order to add more abstraction to the IoT architecture. Still, with
the traditional network architecture, the management, control, and monitoring of
the IoT network is extremely complex and rigid. However, introducing the SDN
model in the IoT architecture brings a new abstraction level. The SDN-based
architecture provides a clear separation of control and data plane, which is the
key enabler for more flexibility and programmability in the IoT network.

Figure 3 depicts our proposed SDN-based architecture for IoT. We propose a
layered architecture with more abstraction of the network layer where we inte-
grate the model SDN. Moreover, SDN enhances the flexibility and agility of the
IoT network by adopting the flexibility of dynamic configuration guaranteed by
the programmability of the control plane.

As shown in Fig. 3, our proposed SDN based architecture for IoT composes of
four layers:

• Perception layer contains various IoT devices like sensors, actuators, mobiles,
laptops, and every smart embedded electronic devices. The main assignment
is capturing and collecting information from the surrounding environment.
Then, the IoT device establishes a connectivity with other heterogeneous
devices to share data or within the gateway.

• Edge/Fog layer where Edge node provides more powerful computation and
processing resources for IoT devices. While, Fog node brings the cloud closer
to the thing. So, the Edge/Fog layer can be considered as an intermediate layer
that provides an extra resources layer. Fog and edge nodes can be switches,
gateways computers, and I/O devices that provide storage, computing, and
connectivity services. They can contain also SDN switches and controllers.

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 10 of 29

• Network layer virtualizes the IoT access network devices. Thus, we guaran-
tee the abstraction of this layer. With the concept of SDN that separates the
control actions from the forwarding, the network administration, control, and

Fig. 3 SDN based Architecture for IoT

1 3

Journal of Network and Systems Management (2023) 31:14 Page 11 of 29 14

monitoring can be automatic and dynamic. This layer contains the SDN con-
trollers and SDN switches (i.e., Open Virtual Switches OVS, Open Flows
Switches OFS). The SDN controller can be centralized or distributed accord-
ing to the network requirements.

• Application layer represents the IoT applications or services such as Smart
Home, Smart city, Smart health, or Industrial IoT. It is the most visible part of
the architecture to the end user. The application layer is where data and collected
information are managed and processed.

With applying SDN based model in the IoT architecture, we guarantee the program-
mability of the IoT network and its flexibility. Although it simplifies the manage-
ment and control of the network, SDN needs more enhancements to cope with the
IoT environment requirements. Therefore, we integrate the Docker technology in our
proposed architecture.

3.2 Our Proposed Architecture

IoT covers an heterogeneous system with various devices connected to the Internet
and to each other without human intervention. IoT architecture should be flexible.
Thus, the two technologies SDN and Docker provide best practices and experience
to manage and control IoT networks and applications. Using SDN for network man-
agement will simplify its configuration and control. And applying Docker will pro-
vide application portability and hardware abstraction. As depicted in Fig. 4, our pro-
posed SDN-Docker based architecture for IoT shows the connection of IoT device
(integrating Docker) through the SDN enabling network that is monitored and con-
trolled by the SDN controller.

Furthermore, we propose to encapsulate the IoT application and services such
as smart city, smart transportation, and others into a container software (i.e.,
Docker). The use of containerization gives many advantages. First, containerization

Fig. 4 SDN-Docker based Architecture for IoT

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 12 of 29

guarantees the scalability of the deployment of applications and services. With
docker, it is easier to integrate new IoT device and to update the application of the
existing one. Second, docker guarantees the abstraction of the hardware. Third,
docker is a standard lightweight open-source software.

We apply SDN for the IoT network in which devices are connected through the
SDN network.

The architecture components shown in Fig. 4 are the following:

• IoT Device is heterogeneous hardware that uses its network interface to com-
municate with other IoT devices. It can be a sensor, mobile phone, laptop, or any
other physical entity that has computation, communication, and storage capabili-
ties. The device hosts a Docker container that runs the IoT application.

• SDN Controller is the brain of the network, and it can be a one central control-
ler or several controllers executing the control functions cooperatively. In this
paper, we use one centralized controller. The controller has a global view of the
network. The SDN controller configures switches and gateways with rules for
forwarding data to the corresponding devices. It is responsible also for topology
management.

• SDN-enabled Network contains SDN switches that are responsible for data for-
warding in the network.

As we detailed previously, the key requirement in the IoT environment is the control
and the configuration of heterogeneous entities and networks. SDN and Docker, as
emerging technologies for IoT, provide an abstracted interface to upper layers by
covering underlying layers. So, Docker-based approach provides higher flexibility
and less overhead. It is applied to provide entity management while SDN provides a
dynamic configuration and management of the network.

4 Test Scenario and Results

In this section, we present the IoT use case scenario "Smart supermarket" where
our architecture can be applied. So, firstly, we describe the use case scenario. Then,
we present the deployment scenario and test environment. Finally, we discuss the
experimental results.

4.1 Use Case "Smart Supermarket"

Smart supermarket is a new innovation that uses IoT devices to collect physical data
and transmit them to a digital platform making the shopping experience seamless for
the customers. The application of smart supermarket is being smarter all along with
the evolution of IoT. Therefore, the technology used in the smart supermarket has
evolved from control technology using RFID and sensors to "just walk out" technol-
ogy that uses further artificial intelligence, machine learning, and image recogni-
tion. Thus, IoT sensors can be associated with things used in the supermarket like

1 3

Journal of Network and Systems Management (2023) 31:14 Page 13 of 29 14

freezers and shelves to control and collect data. The temperature sensor can be asso-
ciated with a freezer to control temperature and send an alarm when it gets to the
limit. Also, using IoT, smart shelves can transmit collected data to the responsible
for analysis. The information, for example the most appeal product, helps in mak-
ing a decision for the arrangement of products. Recently, the supermarket has been
using sensors and cameras to track customers and detect chosen items, then auto-
matically charge them when they leave. Figure 5 shows the supermarket use case.
Many companies such as Amazon, Kroger, and Intel implemented smart supermar-
kets. Further, with the COVID-19 pandemic, the smart supermarket application is
getting more attention, especially with autonomous checkout technology to avoid the
line and keep safe.

In this paper, we propose an SDN-Docker based architecture to enhance the flex-
ibility and programmability of the network. The smart supermarket is the best appli-
cation to apply our architecture. In the supermarket, once the customer enters, he
gets identified. Then, there will be multiple cameras that will detect him and follow
him along the shopping process. Besides, there will be sensors to detect goods that
have been chosen. Then, collected data will be sent to the system. Hence, the topol-
ogy, as well as application deployment, will be dynamic and scalable. Our proposed
architecture will be applied in this scenario to enhance the application and network
management and deployment.

4.2 Test Environment

To evaluate the SDN-Docker based architecture for IoT smart supermarket, we run
an emulation using Mininet-WiFi, Containernet, and the ONOS controller. We have
carried out this emulation using three virtual machines (Oracle VM VirtualBox) that
have been installed on a HP Pavilion Gaming laptop that has Intel Core i7-9700
CPU 2.60 GHZ and 16 GBytes of memory. In the first one, we implemented Mini-
net-Wifi to create the network topology. In the second, we deployed ONOS control-
ler. In the third machine, we implemented Containernet.

ONOS [37] is an open source SDN controller joined to the Linux Foundation in
October 2015. Its first prototype was released by Open Networking Lab in 2012.
It is written in Java and provides a distributed SDN applications platform. ONOS

Fig. 5 Smart supermarket

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 14 of 29

provides availability, scalability, and high performance that enables the manage-
ment of the distributed network. It can function as a single entity as well as multiple
servers.

Mininet-WiFi [38, 39] is an extension of Mininet [40, 41] that supports further
virtualized WiFi stations and Access Points (AP). Mininet is a container-based net-
work emulator that runs various types of hosts such as end terminals, switches, rout-
ers, and links on a single Linux kernel and it provides the capability of instantiating
a set of virtual nodes, which can be connected to form any arbitrary network. In
Mininet, the host behaves like a real machine in which the running programs can
send packets through an Ethernet and/or a WIFI interface behaving like a real inter-
face, with a given link speed and delay. It is also able to create OpenFlow enabled
switches required for the SDN environment.

Containernet is a branch of Mininet network emulator. It enables the use of
Docker containers as hosts in emulated network topologies. With containernet,
Docker containers can be connected to the topology (i.e., to switches, other contain-
ers, or legacy Mininet hosts). Also, it enables executing commands inside containers
by using the Mininet CLI. In addition, Containernet enables adding and removing
hosts as well as containers/Docker to a running Mininet topology. And, it permits to
control traffic links (i.e., delay, bandwidth, loss, jitter).

4.3 Experimental Scenarios and Results

The smart supermarket defines a dynamic topology where there are multiple cameras
and sensors that detect and transmit data. Once the client enters into the market, he

Fig. 6 Experimental architecture of the first scenario

1 3

Journal of Network and Systems Management (2023) 31:14 Page 15 of 29 14

gets identified and followed by IoT devices (i.e., cameras and sensors). So, the topol-
ogy will get bigger during the shopping time while more devices will be involved
in the reading movement and choices of the client. Figure 6 shows the experimental
topology of the “Smart supermarket” and Table 2 summarizes the emulation param-
eters. To evaluate the performance of our proposed SDN-Docker based architecture,
we run an emulation using two scenarios. The objective of the first scenario is to
prove the scalability and flexibility of the network. While the second scenario aims
to prove the application flexibility and scalability.

4.3.1 First Scenario

The first scenario represents a dynamic topology implemented with Mininet-WiFi.
The topology as shown in Fig. 6 contains, in the first place, six Open vSwitch (OVS)
and one Access Point (AP). They are all connected to a centralized remote controller
(ONOS) which manages the traffic flow from a second VM. Moreover, the topology
of Fig. 6 can be considered a hierarchical model which is suitable for achieving syn-
chronization in IoT. More, synchronization, as defined in [42, 43], is the coordina-
tion of a group of devices to harmonize the execution of a task by time alignment.
So, related to our topology, we can find in the lower level the IoT devices which
send a request to the OVS (second level) to forward a packet. The OVS in its turn
asks the controller for a path. So, the controller which is the single point of synchro-
nization sends back the rules. Besides, it sends periodically LLDP packets to check
the network status.

There are five camera hosts as clients holding a video server based on VLC media
player named respectively CAM1, CAM2, CAM3, CAM4, and CAM5. There are
three sensors, SN1, SN2 and SN3. The topology contains also three mobiles, MB1
MB2 and MB3. SRV represents the receiver of all flows. We have configured the
bandwidth values of each link on Mininet-WiFi: the links between CAMs and the
OVS are sets to a bandwidth of 10 Mbits/s. The links between SNs and OVS are set
to a bandwidth of 250 Kbits/s. At the running time, we expand the topology (i.e.,
the added nodes highlighted in the red zone). Firstly, we add an OVS named S7 con-
nected to the controller. We add two cameras named respectively CAM6 and CAM7
and a sensor SN5 connected to S7. Secondly, we add an access point named AP2

Table 2 Emulation parameters Parameters Values

Emulator Mininet 2.5 And Containernet
SDN controller ONOS
Video server and client VLC
Traffic generator iPerf
Emulation Time 800 seconds for scenario 1

200 seconds for scenario 2
Number of Hosts 19
Number of Switches 9

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 16 of 29

connected to the controller. We add MB4, MB5, and MB6 connected to AP2. The
different IoT devices (CAMs and SNs) follow a time alignment that we define dur-
ing the emulation. Besides, the controller is centralized and it synchronizes the state
of the network. The emulation of the topology lasts about 800 s.

Two types of traffic are used: (i) An animation video, Big Buck Bunny, with a
high-definition resolution and its duration of 9.57 mins has been used for stream-
ing over the cameras ; (ii) The data traffic is generated using iPerf. The traffic is
captured using tcpdump command and the results are analyzed using the network
protocol analyzer, Wireshark.

The emulation starts by streaming video using VLC over CAM1 to SRV and
CAM3 to MB3 as well as generating data traffic using iPerf from SN1 and MB1 to
SRV. So, a video traffic started between CAM1 and SRV. CAM1 runs VLC media
player as client to stream the video using RTP (Real-Time Transport Protocol),
which uses the UDP (User Datagram Protocol) protocol. SRV is listening to the
video on the port 5004. The same, a video traffic started between CAM3 and MB3.

At the running time, we scale the topology, for the first time, by adding the OVS
S7 and the devices CAM6, SN4, and CAM7. CAM6 starts streaming the video flows
from the adding moment (i.e., at t = 180s) to SRV. Figure 7a and b represent respec-
tively the amount of packets transmitted from CAM1 to SRV and CAM3 to MB3
compared to the traffic generated from CAM6 to SRV. As we can observe, in the two
figures, the transmission rate has an excessive variation. Still, they have the same
behavior. CAM1 and CAM3 have the highest number of the transmitted packet at
second 300 that get over 175 packets for CAM1 and 240 packets for CAM3.

(a)

(b)

Fig. 7 Video traffic during emulation time

1 3

Journal of Network and Systems Management (2023) 31:14 Page 17 of 29 14

Moreover, Fig. 8a and c represent respectively the delay of streaming a video
over CAM1 and CAM6 and listening by SRV on port 5004 and 5006 respectively.
Whereas, Fig. 8b shows the delay of video streaming between CAM3 and MB3.
As we can see, the delay of the three cameras varied between 10 ms and 30 ms.

As we mentioned before, a data traffic is started by sensors and mobiles nodes,
at the same time, with the video traffic generation. Figure 19 shows the through-
put of the transmitted data from the sensors and mobiles to the server (SRV)
and the exchanged data between different IoT devices. Figure 9a represents the
throughput results between SN1 and SRV which is maintained stable with an
average of 240 Kbits/s. Figure 9b represents the throughput of exchanged data
between MB1 and SRV which is varied between 10.4 and 10.6 Mbits/s. Figure 9c
shows the throughput between two IoT devices, SN2 and MB3. The average

(a)

(b)

(c)

Fig. 8 Video streaming delay

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 18 of 29

(a)

(b)

(c)

Fig. 9 Data traffic at the emulation start time

1 3

Journal of Network and Systems Management (2023) 31:14 Page 19 of 29 14

throughput generated between IoT devices is 240 Kbits/s, which is more stable in
comparison to the evaluation in Fig. 9a.

We scale the topology for the second time and we add AP2, MB4, and MB5.
MB5 starts sending data flow to SRV at the adding moment. Figure 10 represents
the throughput generated between MB5 and SRV that is stable with an average of
10.5 Mbits/s. We observe that the variation in the throughput started to decrease
from the 430 s, which is the end time of previous emulations.

Throughout the emulation time, we captured the OpenFlow traffic between the
topology (i.e., Mininet-Wifi) and the Controller (ONOS). The rate of the exchanged
traffic is presented in Fig. 11a. The height number of the exchanged packets is 440

Fig. 10 Throughput of data traffic between MB5 and SRV at the emulation running time

(a)

(b)

Fig. 11 ONOS controller monitoring

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 20 of 29

packets recorded around 20 s which is the time of starting the emulation. The other
peaks did not get over 240 packets and they are corresponding to the time of the
topology change.

Also, we run the monitoring application over ONOS to see the recorded mes-
sages that have been exchanged between the running switches and the controller at a
specific moment. Figure 11b represents the amount of exchanged OpenFlow packets
at the time of adding the second access point (AP2). As expected, the value of all
exchanged AP2 messages are set to zero. The switch S7 has the lowest value since
it is just added to the topology (100 s before AP2). While for the other switches, the
number of reply packets overcome 7000 packets and reached the 8000 messages for
AP1 .

In summary, these all results validate the flexibility and scalability qualities of
our proposed architecture. The performances of the various devices (i.e., CAM1,
CAM3, SN1, SN2, and MB1) have not been decreased while we add new devices
and links during the emulation. Even the quality of the streamed video is maintained
all along the emulation time.

4.3.2 Second Scenario

In the second scenario, we will use Containernet [44] to emulate our topology since
we will use Dockers instead of hosts. The topology, as shown in Fig. 12, consists
of 7 Open vSwitch (OVS) and 12 Docker hosts where 6 of them (CAM1 to CAM6)
will be considered as Docker hosts and 6 considered as Docker sensors (SN1 to
SN6). The OVS is controlled and managed by the ONOS controller. The bandwidth
of links between S3 and S6 and between S2 and S4 is set to 10 Mbits/s. Also, the

Fig. 12 Experimental architecture of the second scenario

1 3

Journal of Network and Systems Management (2023) 31:14 Page 21 of 29 14

bandwidth of the links between S2 and S5 and between S3 and S7 is set to 250
Kbits/s. The emulation of the second scenario lasts 200 s and we used the emulator
containernet. The dockers of CAM1 to CAM6 and sensors SN1 to SN6 are imple-
mented as Docker containers while SRV remains an ordinary host. To evaluate the
flexibility and the scalability of the topology, we run two applications with two dif-
ferent protocols. We use MQTT (Message Queuing Telemetry Transport) protocol
for the IoT data transmission and TCP (Transmission Control Protocol) for data traf-
fic generation.

MQTT is an application protocol that runs over the TCP/IP protocol using the
publish-subscribe pattern. For the docker containers of CAM1 to CAM6, we cre-
ate a DockerFile where we build an Ubuntu image, install all the dependencies, and
the iPerf application to generate the TCP traffic. For the docker containers of sen-
sors, we create a second DockerFile where we build another Ubuntu image, install
dependencies, and install the Mosquitto, the MQTT broker, and MQTT client.

Like the first scenario, the IoT devices containing dockers (CAMs and SNs) fol-
low a time alignment during the emulation. The centralized controller synchronizes
the state of the network. So, at the starting emulation time, we activate the MQTT
broker on SRV. Then, we take SN1 and SN6 respectively as subscriber and pub-
lisher. Hence, SN6 starts publishing the message which is the temperature, and SN6
subscribes to request it from the broker (SRV) who is listening at port 1883.

Figure 13 represents the throughput evaluated during emulation time. The aver-
age throughput generated between SRV, SN1, and SN6 is about 1400 Bits/s. As we
can observe there is a period couple of peaks. They represent ping request and ping
response between once the broker and the publisher and the other between broker
and subscriber.

At the same time, we start the generation of TCP traffic with iPerf on CAM2
to SRV and from CAM1 to CAM6. Figure 14a and b represent respectively the
throughput between CAM2 and SRV and CAM1 and CAM6. The two figures have
the same behavior as they maintain stability with an average throughput equal to 9
Mbits/s.

Figure 15a and b represent respectively the RTT delay between CAM1 and
CAM6 and between CAM2 and SRV. We can see that differently from the through-
put where they have almost the same value, they have also different delay values.
The delay between CAM1 and CAM6 is varied between 0 and 15 ms while the delay
between CAM2 and SRV is varied between 0 and 5 ms.

Fig. 13 MQTT throughput

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 22 of 29

In the second scenario, we also captured the OpenFlow message exchanged
between Containernet where we implement our topology and ONOS. Figure 16
shows the amount of packets exchanged. As shown in the figure, the highest number
of the exchanged packets is 80 packets.

In the second part of the second scenario, we test the scalability of the SDN-
Docker-based architecture. We define a time alignment for the IoT devices
(docker hosts) to follow during the emulation. So, we start again with the topol-
ogy in Fig. 12 where all nodes are docker containers. We start the evaluation
by generating TCP traffic over CAM1 to SRV, activating the MQTT broker on
SRV, and starting the publishing of temperature (i.e., message) by SN1. Then,
we scale the topology, for the first time at t=30s, by adding the OVS S8 and the
three docker hosts CAM7, CAM8, and CAM9. CAM7 starts generating data to
SRV. Figure 19a represents the throughput of exchanged data between CAM1
and SRV. The average throughput generated is about 9.53 Mbits/second. Also,
Fig. 19b represents the throughput generated between the added docker hosts

(a)

(b)

Fig. 14 Throughput evaluation of docker hosts

1 3

Journal of Network and Systems Management (2023) 31:14 Page 23 of 29 14

CAM7 and SRV. The average throughput generated is 9.52 Mbits/s. Similarly,
we generate a TCP traffic between SN5 and CAM2. The average generated
throughput represented in Fig. 19c is 241 Kbits/s. We can compare the results
with those in Fig. 9 of the first scenario (i.e., SDN-based architecture). We

(a)

(b)

Fig. 15 Delay evaluation of docker hosts

Fig. 16 OpenFlow message exchanged between ONOS and OVSs

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 24 of 29

notice that the throughput decreased. But, compared to the results of the first
part of the second scenario where there is no scalability, we notice that there is
no impact. Next, we scale the topology for the second time (100 s after the first
scale) and we add S9, SN7, SN8, and SN9. At the adding time, SN8 subscribes
and requests the message (temperature) from the broker (SRV). Figure 18 rep-
resents the flow rate between SN1, SRV, and SN8. We can notice that the peaks
are not a couple and that is because the publishing and the subscribing are alter-
natives. Finally, Fig. 17 represents the amount of exchanged OpenFlow packets
between ONOS and the switches. We notice that the flow is more intensive and
the peak gets over 100 packets.

To summarize, in the second scenario, we deployed a topology where the
hosts are Dockers. In those Dockers, we build two different images of Ubuntu.
Then on top of them, we installed in one iPerf and in the other Mosquitto and
MQTT client and server. Next, we start the emulation by generating flows from
different nodes. The obtained results validate our objective in terms of scalabil-
ity and flexibility of the architecture.

Fig. 17 OpenFlow message exchanged between ONOS and OVSs at scale time

Fig. 18 MQTT throughput at scale time

1 3

Journal of Network and Systems Management (2023) 31:14 Page 25 of 29 14

5 Discussion and Conclusion

In this paper, we proposed a scalable and flexible architecture in order to face IoT
challenges such as heterogeneity and scalability. Firstly, we study the IoT challenges
as well as the network softwarization techniques (i.e., SDN and containerization).
Secondly, we describe an SDN-based architecture for IoT. Finally, we proposed an
SDN-Docker based architecture for IoT. Furthermore, we use the smart Supermarket
use case to validate our architecture. Indeed, the topology of the Smart supermarket
is very dynamic and scalable which is considered the best application of our pro-
posed architecture. In this paper, we focused on testing our SDN-based architecture
as well as our SDN-Docker-based architecture. The obtained results demonstrate the
flexibility and scalability of both architectures. Furthermore, it demonstrates that the

(b)

(c)

(a)

Fig. 19 Data traffic at scale time

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 26 of 29

use of SDN improves the management of the heterogeneous and scalable IoT net-
work since the performance does not decrease when scaling the network of both
scenarios. Also, the results of the second scenario in which we apply docker in the
IoT devices demonstrate the application scalability. Although, we notice a decrease
in the throughput performance when we use docker in the devices compared to the
native devices (i.e., the first scenario) but it remains stable during the scalability of
the network.

This paper is considered as our work’s basis and it can be extended to answer
other IoT requirements. Certainly, some questions still remained such as the impact
of the architecture on the delay especially for some IoT applications such as IIoT
which is time-sensitive [45]. Additionally, the use of docker and containerization in
general in the IoT device can be discussed. Therefore, we continue enhancing our
architecture. We already started with boosting the Docker to the Edge/fog node in
order to reduce the delay and to answer the IIoT requirements in [46].Also, we are
working on applying the containerization in the Fog node so that we apply the face
recognition and movement detection applications on captured videos. Besides, with
the use of Kubernetes, as an orchestrator of Dockers, we can guarantee the auto-
scaling of applications. At the same time, in our future work, we intend to manage
the mobility of IoT. Therefore, the work of Moufakir et al. [47] can be considered in
our research. Finally, we are working on distributing the SDN control plane to guar-
antee more network scalability.

References

 1. Eleonora, B.: The internet of things vision: key features, applications and open issues. Comput.
Commun. 54, 1–31 (2014)

 2. Mishra, P., Puthal, D., Tiwary, M., Mohanty, S.P.: Software defined IoT systems: properties, state of
the art, and future research. IEEE Wirel. Commun. 26(6), 64–71 (2019)

 3. Bera, S., Misra, S., Vasilakos, A.V.: Software-defined networking for internet of things: a survey.
IEEE Internet Things J. 4(6), 1994–2008 (2017)

 4. Alam, I., Sharif, K., Li, F., Latif, Z., Karim, M., Biswas, S., Nour, B., Wang, Y.: A survey of net-
work virtualization techniques for internet of things using sdn and nfv. ACM Comput. Surv. (CSUR)
53(2), 1–40 (2020)

 5. Tayyaba, S.K., Shah, M.A., Khan, O.A., Ahmed, A.W.: Software defined network (sdn) based inter-
net of things (iot) a road ahead. In: Proceedings of the International Conference on Future Networks
and Distributed Systems, pp. 1–8 (2017)

 6. Morabito, R., Petrolo, R., Loscri, V., Mitton, N.: Legiot: a lightweight edge gateway for the internet
of things. Future Gener. Comput. Syst. 81, 1–15 (2018)

 7. Alam, M., Rufino, J., Ferreira, J., Ahmed, S.H., Shah, N., Chen, Y.: Orchestration of microservices
for iot using docker and edge computing. IEEE Commun. Mag. 56(9), 118–123 (2018)

 8. Xu, Y., Mahendran, V., Sridhar, R.: Sdn docker: enabling application auto-docking/undocking in
edge switch. In: Proceedings of the 2016 IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS). IEEE (2016)

 9. Bedhief, I., Kassar, M., Aguili, T.: Sdn-based architecture challenging the iot heterogeneity. In: Pro-
ceedings of the 2016 3rd Smart Cloud Networks & Systems (SCNS). IEEE, pp. 1–3 (2016)

 10. Zikria, Y.B., Yu, H., Afzal, M.K., Rehmani, M.H., Hahm, O.: Internet of Things (IoT): Operat-
ing System, Applications and Protocols Design, and Validation Techniques. Elsevier, Amsterdam
(2018)

 11. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-
defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

1 3

Journal of Network and Systems Management (2023) 31:14 Page 27 of 29 14

 12. Bedhief, I., Kassar, M., Aguili, T.: From evaluating to enabling sdn for the internet of things. In:
Proceedings of the 2018 IEEE/ACS 15th International Conference on Computer Systems and
Applications (AICCSA). IEEE, pp. 1–8

 13. Li, Y., Su, X., Ding, A.Y., Lindgren, A., Liu, X., Prehofer, C., Riekki, J., Rahmani, R., Tarkoma,
S., Hui, P.: Enhancing the internet of things with knowledge-driven software-defined networking
technology: future perspectives. Sensors 20(12), 3459 (2020)

 14. Wu, D., Arkhipov, D.I., Asmare, E., Qin, Z., McCann, J.A.: Ubiflow: mobility management in
urban-scale software defined iot. In: Proceedings of the 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, pp. 208–216 (2015)

 15. Qin, Z., Denker, G., Giannelli, C., Bellavista, P., Venkatasubramanian, N.: A software defined
networking architecture for the internet-of-things. In: Proceedings of the Network Operations
and Management Symposium (NOMS), 2014 IEEE (2015)

 16. Martinez-Julia, P., Skarmeta, A.F., et al.: Empowering the internet of things with software
defined networking. In: Proceedings of the FP7 European research project on the future Internet
of Things (2014)

 17. Jararweh, Y., Al-Ayyoub, M., Darabseh, A., Benkhelifa, E., Vouk, M., Andy, R.: Sdiot: a soft-
ware defined based internet of things framework. J. Ambient Intell. Hum. Comput. 6, 453–461
(2015)

 18. Huang, H., Zhu, J., Zhang, L.: An sdn_based management framework for iot devices. In: Pro-
ceedings of the 25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland
International Conference on Information and Communications Technologies (ISSC 2014/CIICT
2014). IET, pp. 175–179 (2013)

 19. Tran, H.A., Tran, D., Nguyen, L.G., Ha, Q.T., Tong, V., Mellouk, A.: Shiot: a novel sdn-based
framework for the heterogeneous internet of things. Informatica 42(3), 507 (2018)

 20. Ojo, M., Adami, D., Giordano, S.: A sdn-iot architecture with nfv implementation. In: Proceed-
ings of the 2016 IEEE Globecom Workshops (GC Wkshps). IEEE, pp. 1–6 (2016)

 21. Tomovic, S., Yoshigoe, K., Maljevic, I., Radusinovic, I.: Software-defined fog network architec-
ture for iot. Wireless Pers. Commun. 92(1), 181–196 (2017)

 22. What is docker ? https:// www. docker. com/ what- docker
 23. Morabito, R., Kjällman, J., Komu, M.: Hypervisors vs. lightweight virtualization: a performance

comparison. In: Proceedings of the 2015 IEEE International Conference on Cloud Engineering.
IEEE, pp. 386–393 (2015)

 24. Morabito, R.: A performance evaluation of container technologies on internet of things devices.
In: Proceedings of the IEEE Infocom 2016. IEEE (2016)

 25. Ruchika, V.: Evaluation of docker for iot application. Int. J. Recent Innov. Trends Comput. Com-
mun. 4(6), 624 (2016)

 26. Morabito, R.: Virtualization on internet of things edge devices with container technologies: a
performance evaluation. IEEE Access 5, 8835–8850 (2017)

 27. Ja’afreh, M.A., Adhami, H., Alchalabi, A.E., Hoda, M., El Saddik, A.: Toward integrating soft-
ware defined networks with the internet of things: a review. Clust. Comput. 2021, 1–18 (2021)

 28. Chattopadhyay, S., Chatterjee, S., Nandi, S., Chakraborty, S.: Aloe: An elastic auto-scaled and
self-stabilized orchestration framework for iot applications. In: Proceedings of the IEEE INFO-
COM 2019-IEEE Conference on Computer Communications. IEEE, pp. 802–810 (2019)

 29. Yang, R., Zhang, J.: imulab: Internet of things simulation platform based on openstack and con-
tainer technology. In: Proceedings of the 2021 IEEE 6th International Conference on Computer
and Communication Systems (ICCCS). IEEE, pp. 927–932 (2021)

 30. Okwuibe, J., Haavisto, J., Harjula, E., Ahmad, I., Ylianttila, M.: Sdn enhanced resource orches-
tration of containerized edge applications for industrial iot. IEEE Access 8, 229117–229131
(2020)

 31. Okwuibe, J., Haavisto, J., Kovacevic, I., Harjula, E., Ahmad, I., Islam, J., Ylianttila, M.: Sdn-
enabled resource orchestration for industrial iot in collaborative edge-cloud networks. IEEE
Access 9, 115839–115854 (2021)

 32. Muñoz, R., Vilalta, R., Yoshikane, N., Casellas, R., Martínez, R., Tsuritani, T., Morita, I.: Inte-
gration of iot, transport sdn, and edge/cloud computing for dynamic distribution of iot analytics
and efficient use of network resources. J. Lightwave Technol. 36(7), 1420–1428 (2018)

 33. Florita, N.J.B., Sesdoyro, M.L.R., Valdez, J.T.C., Guinto, R.F., Tan, W.M.: Iot resiliency through
edge-located container-based virtualization and sdn. In: Proceedings of the 2021 IEEE Asia
Pacific Conference on Wireless and Mobile (APWiMob). IEEE, pp. 39–44 (2021)

https://www.docker.com/what-docker

 Journal of Network and Systems Management (2023) 31:14

1 3

14 Page 28 of 29

 34. Fawwaz, D.Z., Chung, S.-H., Ahn, C.-W., Kim, W.-S.: Optimal distributed mqtt broker and ser-
vices placement for sdn-edge based smart city architecture. Sensors 22(9), 3431 (2022)

 35. Le, D.T., Großmann, M., Krieger, U.R.: Cloudless resource monitoring in a fog computing sys-
tem enabled by an sdn/nfv infrastructure (2022)

 36. Bolatti, D.A., Todt, C., Scappini, R., Gramajo, S.: Network traffic monitor for ids in iot. In: Pro-
ceedings of the Conference on Cloud Computing, Big Data & Emerging Topics. Springer, pp.
43–57 (2022)

 37. Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor, B.,
Radoslavov, P., Snow, W., et al.: Onos: towards an open, distributed sdn os. In: Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking, pp. 1–6 (2014)

 38. Fontes, R.R., Afzal, S., Brito, S.H., Santos, M.A., Rothenberg, C.E.: Mininet-wifi: Emulating
software-defined wireless networks. In: Proceedings of the 2015 11th International Conference
on Network and Service Management (CNSM). IEEE, pp. 384–389 (2015)

 39. Fontes, R.d.R., Rothenberg, C.E.: Mininet-wifi: a platform for hybrid physical-virtual software-
defined wireless networking research. In: Proceedings of the 2016 ACM SIGCOMM Conference,
pp. 607–608 (2016)

 40. Introduction to Mininet. https:// github. com/ minin et/ minin et/ wiki/ Intro ducti on- to- Minin et
 41. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for software-

defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Net-
works, pp. 1–6 (2010)

 42. Olaniyan, R.: Synchronization schemes for internet of things and edge intelligence applications.
PhD thesis, McGill University (Canada) (2021)

 43. Olaniyan, R., Maheswaran, M.: Multipoint synchronization for fog-controlled internet of things.
IEEE Internet Things J. 6(6), 9656–9667 (2019)

 44. Peuster, M.: Containernet. https:// conta inern et. github. io/
 45. Balasubramanian, V., Aloqaily, M., Reisslein, M.: An sdn architecture for time sensitive indus-

trial iot. Comput. Netw. 186, 107739 (2021)
 46. Bedhief, I., Foschini, L., Bellavista, P., Kassar, M., Aguili, T.: Toward self-adaptive software

defined fog networking architecture for iiot and industry 4.0. In: Proceedings of the 2019 IEEE
24th International Workshop on Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD). IEEE, pp. 1–5 (2019)

 47. Moufakir, T., Zhani, M.F., Gherbi, A., Bouachir, O.: Collaborative multi-domain routing in sdn
environments. J. Netw. Syst. Manag. 30(1), 1–23 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article
under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of
the accepted manuscript version of this article is solely governed by the terms of such publishing
agreement and applicable law.

Intidhar Bedhief has a Computer Science engineering degree from the Faculty of Sciences of Tunis, Uni-
versity of Tunis El Manar, Tunisia in 2012. She received her master degree in Communication Systems
in 2016 from the National Engineering School of Tunis (ENIT), University of Tunis El Manar, Tunisia,
where she is currently pursuing her Ph.D. in Communication Systems Laboratory (LR-Sys’Com). Her
research interests are the Internet of Things (IoT), Software Defined Networking (SDN), Network Virtu-
alization, and Network Orchestration.

Meriem Kassar received the B.E degree in Computer Networks and Telecommunications from the
National Institute of Applied Sciences and Technology, INSAT, Tunisia, in 2004, the M.S and Ph.D
degrees in Networks from University of Paris 6, UPMC, in 2005 and 2009 respectively. She is currently
Assistant Professor at the National Engineering School of Tunis (ENIT), the University of Tunis El
Manar, Tunisia. She is a senior researcher at Communication Systems Laboratory (LR-Sys’Com). Her
research interests include Computer Networks, Heterogeneous Wireless Networks, Mobility Manage-
ment, Software-Defined Networking (SDN), Internet of Things (IoT) and D2D in 5G networks.

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://containernet.github.io/

1 3

Journal of Network and Systems Management (2023) 31:14 Page 29 of 29 14

Taoufik Aguili received a Ph.D. degree in telecommunications from INSA, France, in 1990. He is cur-
rently a full Professor at the National Engineering School of Tunis (ENIT), the University of Tunis El
Manar, Tunisia. He is also the head director of Communications Systems Laboratory (SysCom) and the
coordinator of the master degree in communications and information technology at the National Engi-
neering School of Tunis (ENIT), Tunisia. His research interests include modeling of microwave systems
and nano-devices, numerical methods in electromagnetics, electromagnetic wave phenomena in layered
media, integrated transmission lines, waveguides and antennas, and leaky-wave phenomena. He has pub-
lished over 250 papers.

Authors and Affiliations

Intidhar Bedhief1 · Meriem Kassar1 · Taoufik Aguili1

 Meriem Kassar
 Meriem.Kassar@enit.utm.tn

 Taoufik Aguili
 Taoufik.Aguili@gmail.com

1 Communication Systems Laboratory LRSys’Com, National Engineering School of Tunis
(ENIT), University Tunis El Manar, CampusUniversitaire Farhat Hached El Manar, Le
Belvédère, BP 37, 1002 Tunis, Tunisia

http://orcid.org/0000-0001-7921-2572

	Empowering SDN-Docker Based Architecture for Internet of Things Heterogeneity
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 IoT Challenges
	2.2 Software-Defined Networking for IoT
	2.3 Dockerization for IoT
	2.4 Related Work

	3 SDN-Docker Based Architecture for IoT
	3.1 SDN-Based Architecture for IoT
	3.2 Our Proposed Architecture

	4 Test Scenario and Results
	4.1 Use Case "Smart Supermarket"
	4.2 Test Environment
	4.3 Experimental Scenarios and Results
	4.3.1 First Scenario
	4.3.2 Second Scenario

	5 Discussion and Conclusion
	References

