Skip to main content

Advertisement

Log in

A Game Theoretic Framework for Distributed Mission Slice Allocation and Management for Tactical Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of implementing distributed slice allocation algorithms for tactical networks deployed in regions lacking a communication infrastructure. We propose a multi-agent game implementation in which Application Slice Agents (ASAs) compete for shared computational and bandwidth resources in the network. We prove that the game can be implemented as a two stage potential game, with the first stage ensuring the selection of computational servers with load balancing, and the second stage improving connectivity and network throughput by promoting inter-slice cooperation. Our proposed analysis framework also incorporates a theoretical model to capture the impact of mitigation methods for timing channel leaks for the shared resources for different slices, and proposes a theoretical framework that allows for a security-delay tradeoff analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Samdanis, K., Costa-Perez, X., Sciancalepore, V.: From network sharing to multi-tenancy: the 5g network slice broker. IEEE Commun. Mag. 54(7), 32–39 (2016)

    Article  Google Scholar 

  2. Li, X., Samaka, M., Chan, H.A., Bhamare, D., Gupta, L., Guo, C., Jain, R.: Network slicing for 5g: challenges and opportunities. IEEE Internet Comput. 21(5), 20–27 (2017)

    Article  Google Scholar 

  3. Debbabi, F., Jmal, R., Fourati, L.C., Ksentini, A.: Algorithmics and modeling aspects of network slicing in 5g and beyonds network: survey. IEEE Access 8, 162748–162762 (2020). https://doi.org/10.1109/ACCESS.2020.3022162

    Article  Google Scholar 

  4. Chien, H.-T., Lin, Y.-D., Lai, C.-L., Wang, C.-T.: End-to-end slicing as a service with computing and communication resource allocation for multi-tenant 5g systems. IEEE Wirel. Commun. 26(5), 104–112 (2019)

    Article  Google Scholar 

  5. Li, W., Zi, Y., Feng, L., Zhou, F., Yu, P., Qiu, X.: Latency-optimal virtual network functions resource allocation for 5g backhaul transport network slicing. Appl. Sci. 9(4), 701 (2019)

    Article  Google Scholar 

  6. Fendt, A., Lohmuller, S., Schmelz, L.C., Bauer, B.: A network slice resource allocation and optimization model for end-to-end mobile networks. In: 2018 IEEE 5G World Forum (5GWF), pp. 262–267 (2018) IEEE

  7. Kwak, J., Moon, J., Lee, H.-W., Le, L.B.: Dynamic network slicing and resource allocation for heterogeneous wireless services. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–5 (2017). IEEE

  8. Ma, T., Zhang, Y., Wang, F., Wang, D., Guo, D.: Slicing resource allocation for embb and urllc in 5g ran. Wireless Communications and Mobile Computing 2020 (2020)

  9. Isolani, P.H., Cardona, N., Donato, C., Pérez, G.A., Marquez-Barja, J.M., Granville, L.Z., Latré, S.: Airtime-based resource allocation modeling for network slicing in IEEE 802.11 rans. IEEE Commun. Lett. 24(5), 1077–1080 (2020)

    Article  Google Scholar 

  10. Abiko, Y., Saito, T., Ikeda, D., Ohta, K., Mizuno, T., Mineno, H.: Radio resource allocation method for network slicing using deep reinforcement learning. In: 2020 International Conference on Information Networking (ICOIN), pp. 420–425 (2020). IEEE

  11. Caballero, P., Banchs, A., De Veciana, G., Costa-Pérez, X., Azcorra, A.: Network slicing for guaranteed rate services: admission control and resource allocation games. IEEE Trans. Wirel. Commun. 17(10), 6419–6432 (2018)

    Article  Google Scholar 

  12. D’Oro, S., Galluccio, L., Mertikopoulos, P., Morabito, G., Palazzo, S.: Auction-based resource allocation in openflow multi-tenant networks. Comput. Netw. 115, 29–41 (2017)

    Article  Google Scholar 

  13. Jiang, M., Condoluci, M., Mahmoodi, T.: Network slicing in 5g: An auction-based model. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6 (2017). IEEE

  14. Wang, G., Feng, G., Tan, W., Qin, S., Wen, R., Sun, S.: Resource allocation for network slices in 5g with network resource pricing. In: GLOBECOM 2017–2017 IEEE Global Communications Conference, pp. 1–6 (2017). IEEE

  15. Buyakar, T.V.K., Agarwal, H., Tamma, B.R., Franklin, A.A.: Resource allocation with admission control for gbr and delay qos in 5g network slices. In: 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), pp. 213–220 (2020). IEEE

  16. Khan, H.Z., Ali, M., Naeem, M., Rashid, I., Siddiqui, A.M., Imran, M., Mumtaz, S.: Resource allocation and throughput maximization in decoupled 5g. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2020). IEEE

  17. Tseng, Y.-T., Jan, R.-H., Chen, C., Wang, C.-F., Li, H.-H.: A vehicle-density-based forwarding scheme for emergency message broadcasts in vanets. In: The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010), pp. 703–708 (2010). IEEE

  18. Ramakrishnan, B., Nishanth, R.B., Joe, M.M., Selvi, M.: Cluster based emergency message broadcasting technique for vehicular ad hoc network. Wirel. Netw. 23(1), 233–248 (2017)

    Article  Google Scholar 

  19. Deruyck, M., Wyckmans, J., Joseph, W., Martens, L.: Designing uav-aided emergency networks for large-scale disaster scenarios. EURASIP J. Wirel. Commun. Netw. 2018(1), 79 (2018)

    Article  Google Scholar 

  20. Malan, D.J., Fulford-Jones, T., Welsh, M., Moulton, S.: Codeblue: An ad hoc sensor network infrastructure for emergency medical care. In: International Workshop on Wearable and Implantable Body Sensor Networks (2004)

  21. Burbank, J.L., Chimento, P.F., Haberman, B.K., Kasch, W.T.: Key challenges of military tactical networking and the elusive promise of manet technology. IEEE Commun. Mag. 44(11), 39–45 (2006)

    Article  Google Scholar 

  22. Castañares, A., Tosh, D.K., Kamhoua, C.A.: Slice aware framework for intelligent and reconfigurable battlefield networks. In: MILCOM 2021-2021 IEEE Military Communications Conference (MILCOM), pp. 489–494 (2021). IEEE

  23. Khan, A.A., Abolhasan, M., Ni, W., Lipman, J., Jamalipour, A.: An end-to-end (e2e) network slicing framework for 5g vehicular ad-hoc networks. IEEE Trans. Vehicular Technol. 70(7), 7103–7112 (2021)

    Article  Google Scholar 

  24. Grasso, C., Raftopoulos, R., Schembra, G.: Tailoring fanet-based 6g network slices in remote areas for low-latency applications. Proc. Comput. Sci. 203, 69–78 (2022)

    Article  Google Scholar 

  25. Kadloor, S., Kiyavash, N., Venkitasubramaniam, P.: Mitigating timing based information leakage in shared schedulers. In: 2012 Proceedings IEEE INFOCOM, pp. 1044–1052 (2012). IEEE

  26. Zhou, Y., Wagh, S., Mittal, P., Wentzlaff, D.: Camouflage: Memory traffic shaping to mitigate timing attacks. In: 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 337–348 (2017). IEEE

  27. Zhou, A., Hassanein, H.: Load-balanced wireless ad hoc routing. In: Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No. 01TH8555), vol. 2, pp. 1157–1161 (2001). IEEE

  28. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, rsa, dss, and other systems. In: Annual International Cryptology Conference, pp. 104–113 (1996). Springer

  29. Kleinrock, L.: Queueing Systems, Computer Applications, vol. 2. Wiley, New York (1976)

    MATH  Google Scholar 

  30. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)

    Article  MATH  Google Scholar 

  31. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)

    Article  MATH  Google Scholar 

  32. Voorneveld, M.: Best-response potential games. Econ. Lett. 66(3), 289–295 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by CACI International, Inc. (CACI). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of CACI.

Disclaimers

This document does not contain controlled technical data as defined within the International Traffic in Arms Regulations (ITAR), Part 120.10, or Export Administration Regulations (EAR), Part 734.7-10, (PRR ID674).

Funding

Partial student support was received from LGS/CACI.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the manuscript.

Corresponding author

Correspondence to Fan Yang.

Ethics declarations

Conflict of interest

The authors declared no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was done when Lloyd Greenwald was with CACI International Inc.

Appendices

Appendix A: Proof of Theorem 1

We construct the potential function as:

$$\begin{aligned} \Phi (a) = -\sum _{i =1}^NC^I_{ST_i}(a_i) - \eta * \sum _{i =1}^N \sum _{s \epsilon a_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt})- \omega *\sum _{i =1}^N\sum _{j \epsilon a_i}l_j(n_j^i(a)) \end{aligned}$$
(A.1)

We show that this is an exact potential function for the game.

Let a single slice agent i change its strategy from \(a_i\) to \(b_i\), the change in potential function \(\bigtriangleup \Phi\) should exactly be equal to the change in the players’ utility \(\bigtriangleup u_i\): i.e., \(\bigtriangleup \Phi = \bigtriangleup U\).

$$\begin{aligned}&\bigtriangleup U^I_i = U^I_i(b_i, a_{-i}) -U^I_i(a_i, a_{-i}) \nonumber \\&\quad = (C^I_{ST_i}(a_i) - C^I_{ST_i}(b_i)) - \eta * \left(\sum _{s \epsilon b_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt}) - \sum _{s \epsilon a_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt})\right) \nonumber \\&\qquad -\omega *\left(\sum _{j\epsilon {b_i|a_{-i}}} l_j(n_j(a)) - \sum _{j \epsilon a_i |a_{-i}} l_j(n_j(a))\right) \end{aligned}$$
(A.2)

Let,

$$\begin{aligned} U_i^1&= (C^I_{ST_i}(a_i) - C^I_{ST_i}(b_i)) \nonumber \\&\quad + \eta * \left(\sum _{s \epsilon a_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt}) - \sum _{s \epsilon b_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt})\right) \end{aligned}$$
(A.3)
$$\begin{aligned} U_i^2&= \omega *\left(\sum _{j \epsilon a_i |a_{-i}}l_j(n_j(a)) - \sum _{j \epsilon b_i|a_{-i}}l_j(n_j(a))\right) \end{aligned}$$
(A.4)

Therefore, (A.2) can be written as,

$$\begin{aligned} \bigtriangleup U^I_i = U_i^1 + U_i^1 \end{aligned}$$

Then,

$$\begin{aligned}\Phi (a_i, a_{-i}) &= -\left(\sum _{v = 1, v \ne i}^NC^I_{ST_i}(a_v) + C^I_{ST_i}(a_i)\right) \nonumber \\&\quad - \eta *\left(\sum _{v = 1, v \ne i}^N \sum _{s \epsilon a_v} \sum _{t \epsilon c_{k_v}} D(s, c_{t}^{clt})\right) + \sum _{s \epsilon a_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt})) \nonumber \\&\quad - \omega *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i}) \end{aligned}$$
(A.5)
$$\begin{aligned}\Phi (b_i, a_{-i})& = -\left(\sum _{v = 1, v \ne i}^NC^I_{ST_i}(a_v) + C^I_{ST_i}(b_i)\right) \nonumber \\&\quad - \eta *\left(\sum _{v = 1, v \ne i}^N \sum _{s \epsilon a_v} \sum _{t \epsilon c_{k_v}} D(s, c_{t}^{clt})\right) + \sum _{s \epsilon b_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt})) \nonumber \\&\quad - \omega *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i}) \end{aligned}$$
(A.6)

Let,

$$\begin{aligned} Q(a_{-i}) = -\sum _{v = 1, v \ne i}^NC^I_{ST_i}(a_v) - \eta *\sum _{v = 1, v \ne i}^N \sum _{s \epsilon a_v} \sum _{t \epsilon c_{k_v}} D(s, c_{t}^{clt})) \end{aligned}$$
(A.7)

Then, (A.5) and (A.6) can be written as,

$$\begin{aligned} \Phi (a_i, a_{-i})&= Q(a_{-i}) -C^I_{ST_i}(a_i) - \eta *\sum _{s \epsilon a_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt})) \nonumber \\&\quad - \omega *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i})) \end{aligned}$$
(A.8)
$$\begin{aligned} \Phi (b_i, a_{-i})&= Q(a_{-i})-C^I_{ST_i}(b_i) - \eta *\sum _{s \epsilon b_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt})) \nonumber \\&\quad - \omega *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i})) \end{aligned}$$
(A.9)

Because \(Q(a_{-i})\) is not influenced by the strategy changing of player i from \(a_i\) to \(b_i\), the equation of \(\bigtriangleup \Phi\) can be written as,

$$\begin{aligned} \bigtriangleup \Phi&= \Phi (b_i, a_{-i}) - \Phi (a_i, a_{-i}) \nonumber \\&= Q(a_{-i}) - Q(a_{-i}) + C^I_{ST_i}(a_i) - C^I_{ST_i}(b_i) \nonumber \\&\quad + \eta *\sum _{s \epsilon a_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt}) -\eta *\sum _{s \epsilon b_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt}) \nonumber \\&\quad + \omega *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i}))- \omega *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i})) \nonumber \\&= C^I_{ST_i}(a_i) - C^I_{ST_i}(b_i) \nonumber \\&\quad + \eta *\left(\sum _{s \epsilon a_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt}\right) - \sum _{s \epsilon b_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt})) \nonumber \\&\quad + \omega *\left(\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i})) - \sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i}))\right) \end{aligned}$$
(A.10)

Let,

$$\begin{aligned} T_1= & {} C^I_{ST_i}(a_i) - C^I_{ST_i}(b_i) + \eta *\left(\sum _{s \epsilon a_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt}) - \sum _{s \epsilon b_i} \sum _{t \epsilon c_{k_i}} D(s, c_{t}^{clt})\right) \end{aligned}$$
(A.11)
$$\begin{aligned} T_2= & {} + \omega *\left(\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i})) - \sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i}))\right) \end{aligned}$$
(A.12)

Therefore, (A.10) can be written as,

$$\begin{aligned} \bigtriangleup \Phi = T_1 + T_2 \end{aligned}$$
(A.13)

According to (A.3) and (A.12), it is obvious that \(U_i^1 = T_1\). Therefore, (7) holds if \(U_i^2 = T_2\).

Considering,

$$\begin{aligned} T_2&= \omega *\left(\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i})) - \sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i}))\right) \nonumber \\&= \omega *\left(\sum _{j \epsilon F}\sum _{k = 1}^{n_j(a_i, a_{-i})}l_j(k) - \sum _{j \epsilon F}\sum _{k = 1}^{n_j(b_i, a_{-i})}l_j(k)\right) \end{aligned}$$
(A.14)

where the second equality comes from exchanging two sums.

Let,

$$\begin{aligned} E(a_i, b_i) = \sum _{k = 1}^{n_j(a_i, a_{-i})}l_j(k) - \sum _{k = 1}^{n_j(b_i, a_{-i})}l_j(k) \end{aligned}$$
(A.15)

We can write (A.14) as,

$$\begin{aligned} T_2&= \omega *\left(\sum _{j \epsilon F}\sum _{k = 1}^{n_j(a_i, a_{-i})}l_j(k) - \sum _{j \epsilon F}\sum _{k = 1}^{n_j(b_i, a_{-i})}l_j(k)\right) \nonumber \\&= \omega * \sum _{j \epsilon F}\left(\sum _{k = 1}^{n_j(a_i, a_{-i})}l_j(k) - \sum _{k = 1}^{n_j(b_i, a_{-i})}l_j(k)\right) \end{aligned}$$
(A.16)

We enumerate and discuss all the cases to check if each \(j \epsilon F\) in \(a_i\) and \(b_i\), then we can get:

  1. Case 1:

    If j is in both \(a_i\) and \(b_i\), then \(n_j(b_i, a_{-i}) = n_j(a_i, a_{-i})\). We can get:

    $$\begin{aligned} E(a_i, b_i) = 0 \end{aligned}$$
    (A.17)
  2. Case 2:

    If j is in \(a_i\) but not in \(b_i\). then \(n_j(a_i, a_{-i}) = n_j(b_i, a_{-i}) + 1\). We can get:

    $$\begin{aligned} E(a_i, b_i) = n_j(a_i, a_{-i}) \end{aligned}$$
    (A.18)
  3. Case 3:

    If j is in \(b_i\) but not in \(a_i\). then \(n_j(b_i, a_{-i}) = n_j(a_i, a_{-i}) + 1\). We can get:

    $$\begin{aligned} E(a_i, b_i) = -n_j(b_i, a_{-i}) \end{aligned}$$
    (A.19)

Therefore, We can write (A.16) as,

$$\begin{aligned} T_2 = \omega *\left(\sum _{j \epsilon a_i |a_{-i}}l_j(n_j(a)) - \sum _{j \epsilon b_i |a_{-i}}l_j(n_j(a))\right) \end{aligned}$$
(A.20)

According to (A.4) and (A.20), we can see that \(U_i^2 = T_2\). This proves that (7) holds for the game \(\langle P, F, A, (u_i)_{i \epsilon P}^I \rangle\), and the game is an exact potential game.

Appendix B: Proof of Theorem 2

We construct the potential function as:

$$\begin{aligned} \Phi (a) = -\sum _{i \epsilon P}C^{II}_{ST_i}(a_i) - \delta * \sum _{i \epsilon P} \sum _{s \epsilon a_i} (1 / P_s) - \alpha *\sum _{i =1}^N\sum _{j \epsilon a_i}l_j(n_j^i(a)) \end{aligned}$$
(B.1)

We show that this is an exact potential function for the game.

Let a single slice agent i change its strategy from \(a_i\) to \(b_i\), the change in potential function \(\bigtriangleup \Phi\) should exactly be equal to the change in the players’ utility \(\bigtriangleup U_i\): i.e., \(\bigtriangleup \Phi = \bigtriangleup U\).

$$\begin{aligned}&\bigtriangleup U^{II}_i = U^{II}_i(bi, a_{-i}) - U^{II}_i(ai, a_{-i}) \nonumber \\&\quad = (C^{II}_{ST_i}(a_i) - C^{II}_{ST_i}(b_i)) - \delta * \left(\sum _{s \epsilon b_i} (1 / P_s) - \sum _{s \epsilon a_i} (1 / P_s)\right) \nonumber \\&\qquad -\alpha *\left(\sum _{j \epsilon b_i |a_{-i}}l_j(n_j(a)) - \sum _{j \epsilon a_i |a_{-i}}l_j(n_j(a))\right) \end{aligned}$$
(B.2)

Let,

$$\begin{aligned} U_i^3= & {} (C^{II}_{ST_i}(a_i) - C^{II}_{ST_i}(b_i)) + \delta * \left(\sum _{s \epsilon a_i} (1 / P_s) - \sum _{s \epsilon b_i} (1 / P_s)\right) \end{aligned}$$
(B.3)
$$\begin{aligned} U_i^4= & {} \alpha *\left(\sum _{j \epsilon a_i |a_{-i}}l_j(n_j(a)) - \sum _{j \epsilon b_i |a_{-i}}l_j(n_j(a))\right) \end{aligned}$$
(B.4)

Therefore, (B.2) can be written as,

$$\begin{aligned} \bigtriangleup U^{II}_i = U_i^3 + U_i^4 \end{aligned}$$
(B.5)

Then,

$$\begin{aligned} \Phi (a_i, a_{-i})&= -\left(\sum _{v = 1, v \ne i}^NC^{II}_{ST_i}(a_v) + C^{II}_{ST_i}(a_i))- \delta *(\sum _{v = 1, v \ne i}^N \sum _{s \epsilon a_v} (1 / P_s)\right) \nonumber \\&\quad + \sum _{s \epsilon a_i} (1 / P_s))- \alpha *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i})) \end{aligned}$$
(B.6)
$$\begin{aligned} \Phi (b_i, a_{-i})&= -\left(\sum _{v = 1, v \ne i}^NC^{II}_{ST_i}(a_v) + C^{II}_{ST_i}(b_i))- \delta *(\sum _{v = 1, v \ne i}^N \sum _{s \epsilon a_v} (1 / P_s)\right) \nonumber \\&\quad + \sum _{s \epsilon b_i} (1 / P_s)) - \alpha *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i})) \end{aligned}$$
(B.7)

Let,

$$\begin{aligned} Q(a_{-i})^{II} = -\sum _{v = 1, v \ne i}^NC^{II}_{ST_i}(a_v)- \delta *\sum _{v = 1, v \ne i}^N \sum _{s \epsilon a_v} (1 / P_s) \end{aligned}$$
(B.8)

Then, (B.6) and (B.7) can be written as,

$$\begin{aligned} \Phi (a_i, a_{-i})&= Q(a_{-i})^{II} -C^{II}_{ST_i}(a_i) - \delta *\sum _{s \epsilon a_i} (1 / P_s) \nonumber \\&\quad - \alpha *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i})) \end{aligned}$$
(B.9)
$$\begin{aligned} \Phi (b_i, a_{-i})&= Q(a_{-i})^{II} -C^{II}_{ST_i}(b_i) - \delta *\sum _{s \epsilon b_i} (1 / P_s) \nonumber \\&- \alpha *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i})) \end{aligned}$$
(B.10)

Because \(Q(a_{-i})^{II}\) is not influenced by the strategy changing of player i from \(a_i\) to \(b_i\), the equation of \(\bigtriangleup \Phi\) can be written as,

$$\begin{aligned} \bigtriangleup \Phi&= \Phi (b_i, a_{-i}) - \Phi (a_i, a_{-i}) \nonumber \\&= Q(a_{-i}) - Q(a_{-i}) + C^{II}_{ST_i}(a_i) - C^{II}_{ST_i}(b_i) \nonumber \\&\quad + \delta *\sum _{s \epsilon a_i} (1 / P_s) -\delta *\sum _{s \epsilon b_i} (1 / P_s) \nonumber \\&\quad + \alpha *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i}))- \alpha *\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i})) \nonumber \\&= C^{II}_{ST_i}(a_i) - C^{II}_{ST_i}(b_i) \nonumber \\&\quad + \delta *\left(\sum _{s \epsilon a_i} (1 / P_s) - \sum _{s \epsilon b_i} (1 / P_s)\right) \nonumber \\&\quad + \alpha *\left(\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i}))- \sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i}))\right) \end{aligned}$$
(B.11)

Let,

$$\begin{aligned} T_3= & {} C^{II}_{ST_i}(a_i) - C^{II}_{ST_i}(b_i)+ \delta *\left(\sum _{s \epsilon a_i} (1 / P_s) - \sum _{s \epsilon b_i} (1 / P_s)\right) \end{aligned}$$
(B.12)
$$\begin{aligned} T_4= & {} \alpha *\left(\sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(a_i, a_{-i})) - \sum _{i = 1}^N\sum _{j \epsilon a_i}l_j(n_j(b_i, a_{-i}))\right) \end{aligned}$$
(B.13)

Therefore, (B.11) can be written as,

$$\begin{aligned} \bigtriangleup \Phi = T_3 + T_4 \end{aligned}$$
(B.14)

According to (B.3) and (B.12), it is obvious that \(U_i^3 = T_3\). Therefore, (14) holds if \(U_i^4 = T_4\).

Referring to the proof steps in Theorem 1, we follow the same steps as (A.14)-(A.20) and prove that \(U_i^4 = T_4\).

Consequently, (14) holds for the game \(\langle P, F, A, (u_i)_{i \epsilon P}^{II} \rangle\).

Appendix C: Distributed Algorithms

figure a
figure b

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Comaniciu, C., Krishnan, P. et al. A Game Theoretic Framework for Distributed Mission Slice Allocation and Management for Tactical Networks. J Netw Syst Manage 31, 23 (2023). https://doi.org/10.1007/s10922-022-09709-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-022-09709-w

Keywords