Skip to main content
Log in

Speedy and Efficient Service Chaining and Function Placement Based on Lagrangian Heuristics for Capacitated Shortest Path Tour Problem

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Network functions virtualization (NFV) can realize flexible and diverse network services by replacing the conventional network equipment with the combination of virtual network functions (VNFs) and commodity servers. A certain network service can be composed of a sequence of VNFs, i.e., service (function) chain. The service chaining (SC) problem aims to establish an appropriate service path from the origin node to the destination node, which holds both the resource constraints and service chain requirements of executing the required VNFs in the designated order. SC belongs to the complexity class NP-hard. In the previous work, inspired by the similarity between the SC problem and the shortest path tour problem (SPTP), we showed the capacitated SPTP (CSPTP) based ILP for the SC problem, where CSPTP is a generalized version of the SPTP with both the node and link capacity constraints. In this paper, we propose Lagrangian heuristics to solve the CSPTP-based ILP for the SC in a speedy and efficient manner. We further present that the proposed heuristics can also solve both the service chaining and function placement by slightly extending the network model called an augmented network. Through numerical results, we show that the proposed heuristics for the SC is competitive with the optimal resource allocation while executing much faster than the combination of the CSPTP-based ILP and the existing solver, i.e., CPLEX. Furthermore, we also show that the proposed heuristics for both the service chaining and function placement can still balance the solution optimality and computational complexity, thanks to the parallel computation architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network Function Virtualization: Challenges and Opportunities for Innovations. IEEE Commun. Mag. 53(2), 90–97 (2015). https://doi.org/10.1109/MCOM.2015.7045396

    Article  Google Scholar 

  2. Bhamare, D., Jain, R., Samaka, M., Erbad, A.: A Survey on Service Function Chaining. J. Netw. Comput. Appl. 75, 138–155 (2016). https://doi.org/10.1016/j.jnca.2016.09.001

    Article  Google Scholar 

  3. Yi, B., Wang, X., Li, K., Das, S., Huang, M.: A Comprehensive Survey of Network Function Virtualization. Comput. Netw. 133, 212–262 (2018). https://doi.org/10.1016/j.comnet.2018.01.021

    Article  Google Scholar 

  4. Herrera, J.G., Botero, J.F.: Resource Allocation in NFV: A Comprehensive Survey. IEEE Trans. Netw. Serv. Manage. 13(3), 518–532 (2016). https://doi.org/10.1109/TNSM.2016.2598420

    Article  Google Scholar 

  5. Halpern, J., Pignataro, C.: Service Function Chaining (SFC) Architecture. Technical Report RFC7665 (October 2015). https://doi.org/10.17487/RFC7665

  6. Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: Proc. of STOC. ACM,, vol. 42, pp. 160–177 (2005)

  7. Bhat, S., Rouskas, G.N.: Service-Concatenation Routing with Applications to Network Functions Virtualization. In: Proc. of 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9 (2017)

  8. Gao, L., Rouskas, G.N.: Congestion Minimization for Service Chain Routing Problems With Path Length Considerations. IEEE/ACM Transactions on Networking, 1–14 (2020). https://doi.org/10.1109/TNET.2020.3017792

  9. Sasabe, M., Hara, T.: Capacitated Shortest Path Tour Problem Based Integer Linear Programming for Service Chaining and Function Placement in NFV Networks. IEEE Trans. Netw. Serv. Manage. 18(1), 104–117 (2021). https://doi.org/10.1109/TNSM.2020.3044329

    Article  Google Scholar 

  10. Festa, P.: Complexity Analysis and Optimization of the Shortest Path Tour Problem. Optimization Letters 6(1), 163–175 (2012)

    Article  MATH  Google Scholar 

  11. Festa, P., Guerriero, F., Laganà, D., Musmanno, R.: Solving the Shortest Path Tour Problem. Eur. J. Oper. Res. 230(3), 464–474 (2013)

    Article  MATH  Google Scholar 

  12. Festa, P.: The Shortest Path Tour Problem: Problem Definition, Modeling, and Optimization. In: Proc. of INOC, pp. 1–7 (2009)

  13. Ferone, D., Festa, P., Guerriero, F., Laganà, D.: The Constrained Shortest Path Tour Problem. Computers & Operations Research 74, 64–77 (2016). https://doi.org/10.1016/j.cor.2016.04.002

    Article  MATH  Google Scholar 

  14. de Andrade, R.C., Saraiva, R.D.: An Integer Linear Programming Model for the Constrained Shortest Path Tour Problem. Electronic Notes in Discrete Mathematics 69, 141–148 (2018)

    Article  Google Scholar 

  15. Saraiva, R.D., de Andrade, R.C.: Constrained Shortest Path Tour Problem: Models, Valid Inequalities, and Lagrangian Heuristics. Int. Trans. Oper. Res. 28(1), 222–261 (2021). https://doi.org/10.1111/itor.12782

    Article  Google Scholar 

  16. Sallam, G., Gupta, G.R., Li, B., Ji, B.: Shortest Path and Maximum Flow Problems Under Service Function Chaining Constraints. In: Proc. of IEEE Conference on Computer Communications, pp. 2132–2140 (2018). https://doi.org/10.1109/INFOCOM.2018.8485996

  17. Hyodo, N., Sato, T., Shinkuma, R., Oki, E.: Virtual Network Function Placement for Service Chaining by Relaxing Visit Order and Non-Loop Constraints. IEEE Access 7, 165399–165410 (2019)

    Article  Google Scholar 

  18. Sun, G., Li, Y., Yu, H., Vasilakos, A.V., Du, X., Guizani, M.: Energy-Efficient and Traffic-Aware Service Function Chaining Orchestration in Multi-Domain Networks. Futur. Gener. Comput. Syst. 91, 347–360 (2019). https://doi.org/10.1016/j.future.2018.09.037

    Article  Google Scholar 

  19. Huin, N., Jaumard, B., Giroire, F.: Optimal Network Service Chain Provisioning. IEEE/ACM Trans. Networking 26(3), 1320–1333 (2018). https://doi.org/10.1109/TNET.2018.2833815

    Article  MATH  Google Scholar 

  20. Nguyen, T., Girard, A., Rosenberg, C., Fdida, S.: Routing via Functions in Virtual Networks: The Curse of Choices. IEEE/ACM Trans. Networking 27(3), 1192–1205 (2019). https://doi.org/10.1109/TNET.2019.2912717

    Article  Google Scholar 

  21. Hara, T., Sasabe, M.: Lagrangian Heuristics for Capacitated Shortest Path Tour Problem Based Online Service Chaining. In: Proc. of 2022 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9 (2022)

  22. ILOG: IBM ILOG CPLEX Optimizer. https://www.ibm.com/products/ilog-cplex-optimization-studio. Accessed 15 Jun. 2022 (2020)

  23. Schrijver, A.: Theory of Linear and Integer Programming, Reprinted Wiley, Chichester (2000)

    MATH  Google Scholar 

  24. Li, D., Hong, P., Xue, K., Pei, J.: Virtual Network Function Placement and Resource Optimization in NFV and Edge Computing Enabled Networks. Comput. Netw. 152, 12–24 (2019). https://doi.org/10.1016/j.comnet.2019.01.036

    Article  Google Scholar 

  25. Soualah, O., Mechtri, M., Ghribi, C., Zeghlache, D.: Online and Batch Algorithms for VNFs Placement and Chaining. Comput. Netw. 158, 98–113 (2019). https://doi.org/10.1016/j.comnet.2019.01.041

    Article  Google Scholar 

  26. Alleg, A., Ahmed, T., Mosbah, M., Riggio, R., Boutaba, R.: Delay-aware VNF placement and chaining based on a flexible resource allocation approach. In: Proc. of International Conference on Network and Service Management (CNSM), pp. 1–7 (2017). https://doi.org/10.23919/CNSM.2017.8255993

  27. Bhamare, D., Samaka, M., Erbad, A., Jain, R., Gupta, L., Chan, H.A.: Optimal Virtual Network Function Placement in Multi-Cloud Service Function Chaining Architecture. Comput. Commun. 102, 1–16 (2017). https://doi.org/10.1016/j.comcom.2017.02.011

    Article  Google Scholar 

  28. Dieye, M., Ahvar, S., Sahoo, J., Ahvar, E., Glitho, R., Elbiaze, H., Crespi, N.: CPVNF: Cost-Efficient Proactive VNF Placement and Chaining for Value-Added Services in Content Delivery Networks. IEEE Trans. Netw. Serv. Manage. 15(2), 774–786 (2018). https://doi.org/10.1109/TNSM.2018.2815986

    Article  Google Scholar 

  29. Kiji, N., Sato, T., Shinkuma, R., Oki, E.: Virtual Network Function Placement and Routing for Multicast Service Chaining Using Merged Paths. Opt. Switch. Netw. 36, 1–10 (2020). https://doi.org/10.1016/j.osn.2020.100554

    Article  Google Scholar 

  30. Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervelló-Pastor, C., Monje, Á.: On the Optimal Allocation of Virtual Resources in Cloud Computing Networks. IEEE Trans. Comput. 62(6), 1060–1071 (2013). https://doi.org/10.1109/TC.2013.31

    Article  MATH  Google Scholar 

  31. Open MPI: Open Source High Performance Computing. https://www.open-mpi.org/. Accessed 15 Jun. 2022 (2020)

  32. Savi, M., Tornatore, M., Verticale, G.: Impact of Processing-Resource Sharing on the Placement of Chained Virtual Network Functions. IEEE Transactions on Cloud Computing, 1–14 (2019). https://doi.org/10.1109/TCC.2019.2914387

  33. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The Internet Topology Zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011). https://doi.org/10.1109/JSAC.2011.111002

    Article  Google Scholar 

  34. Batagelj, V., Brandes, U.: Efficient Generation of Large Random Networks. Phys. Rev. E 71(3), 1–5 (2005). https://doi.org/10.1103/PhysRevE.71.036113

    Article  Google Scholar 

  35. Leiserson, C.E.: Fat-trees: Universal Networks for Hardware-efficient Supercomputing. IEEE Trans. Comput. C–34(10), 892–901 (1985). https://doi.org/10.1109/TC.1985.6312192

    Article  Google Scholar 

  36. Boost: Boost Graph Library. https://www.boost.org/. Accessed 15 Jun. 2022 (2020)

Download references

Funding

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant 22H03586, 19K11942, and 21K21288, Japan.

Author information

Authors and Affiliations

Authors

Contributions

TH and MS made contributions to the conception and design of the work. TH implemented the simulator for the experiments and conducted the evaluations. As for the manuscript, TH prepared all the figures and both TH and MS contributed to writing and reviewing the whole part of the manuscript. All authors approved the version to be published.

Corresponding author

Correspondence to Takanori Hara.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an extended version of the paper presented at the 2022 IEEE/IFIP Network Operations and Management Symposium (IEEE NOMS 2022) [21].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, T., Sasabe, M. Speedy and Efficient Service Chaining and Function Placement Based on Lagrangian Heuristics for Capacitated Shortest Path Tour Problem. J Netw Syst Manage 31, 24 (2023). https://doi.org/10.1007/s10922-022-09715-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-022-09715-y

Keywords

Navigation