Skip to main content
Log in

A Discrete Adaptive Lion Optimization Algorithm for QoS-Driven IoT Service Composition with Global Constraints

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In an Internet of Things (IoT) environment, multiple objects usually interact with one another to meet a complex user’s request. This involves the composition of several atomic IoT services. Given a large number of functionally equivalent services with different Quality of Service (QoS) values, the service composition problem remains one of the main challenges in IoT environments. This paper presents a Discrete Adaptive Lion Optimization Algorithm (DALOA) to select IoT services in a composition process while considering global user QoS constraints. DALOA is based on the Lion Optimization Algorithm (LOA) and developed by combining several LOA operators, such as roaming, mating, and migration. First, DALOA divides the initial population into two sub-populations: pride and nomad, and each sub-population has its search strategies. Second, the roaming nomad process follows a random searching mode (strong exploration) to avoid being trapped in local optima. Third, the roaming pride searching mode represents strong local research, ensuring more efficient exploitation. Four, mating (mating pride, mating nomad) allows for information sharing between members of the same population. Finally, the migration operator is used to ensure population diversity by allowing information sharing between the pride and the nomad. The simulation results show that DALOA obtains the best compositional optimality and finds the near-optimal composition of the IoT services in a reasonable execution time compared to other approaches. Indeed, the combination of the previous operators provides a good trade-off between exploration and exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data is available from the authors upon reasonable request.

References

  1. Cassel, G.A.S., Rodrigues, V.F., da Rosa Righi, R., Bez, M.R., Nepomuceno, A.C., da Costa, C.A.: Serverless computing for internet of things: a systematic literature review. Future Gener. Comput. Syst. 128, 299–316 (2022). https://doi.org/10.1016/j.future.2021.10.020

    Article  Google Scholar 

  2. Rabah, B., Mounine, H.S., Ouassila, H.: Qos-aware iot services composition: a survey. Distrib Sens. Intell. Syst. 110, 477–488 (2022). https://doi.org/10.1109/ECOWS.2010.16

    Article  Google Scholar 

  3. Asghari, P., Rahmani, A.M., Javadi, H.H.S.: Service composition approaches in iot: a systematic review. J. Netw. Comput. Appl. 120, 61–77 (2018). https://doi.org/10.1016/j.jnca.2018.07.013

    Article  Google Scholar 

  4. Asghari, P., Rahmani, A.M., Javadi, H.H.S.: Internet of things applications: a systematic review. Comput. Netw. 148, 241–261 (2019). https://doi.org/10.1016/j.comnet.2018.12.008

    Article  Google Scholar 

  5. Boucetti, R., Hemam, S.M., Hioual, O.: An approach based on genetic algorithms and neural networks for qos-aware iot services composition. J. King Saud Univ. Comput. Inform. Sci. (2022). https://doi.org/10.1016/j.jksuci.2022.02.012

    Article  Google Scholar 

  6. Chibani, S.S., Tari, A.: Elephant herding optimization for service selection in qos-aware web service composition. Int. J. Comput. Inform. Eng. 11(10), 1124–1128 (2017)

    Google Scholar 

  7. Alsaryrah, O., Mashal, I., Chung, T.-Y.: Bi-objective optimization for energy aware internet of things service composition. IEEE Access 6, 26809–26819 (2018). https://doi.org/10.1109/ACCESS.2018.2836334

    Article  Google Scholar 

  8. Cheng, B., Fuerst, J., Solmaz, G., Sanada, T.: Fog function: Serverless fog computing for data intensive iot services. In: 2019 IEEE International Conference on Services Computing (SCC), pp. 28–35 (2019). https://doi.org/10.1109/SCC.2019.00018. IEEE

  9. Alrifai, M., Risse, T.: Combining global optimization with local selection for efficient qos-aware service composition. In: Proceedings of the 18th International Conference on World Wide Web, pp. 881–890 (2009). https://doi.org/10.1145/1526709.1526828

  10. Gabrel, V., Manouvrier, M., Murat, C.: Web services composition: complexity and models. Discrete Appl. Math. 196, 100–114 (2015). https://doi.org/10.1016/j.dam.2014.10.020

    Article  MathSciNet  Google Scholar 

  11. Alrifai, M., Risse, T., Nejdl, W.: A hybrid approach for efficient web service composition with end-to-end qos constraints. ACM Trans. Web (TWEB) 6(2), 1–31 (2012). https://doi.org/10.1145/2180861.2180864

    Article  Google Scholar 

  12. Gabrel, V., Manouvrier, M., Moreau, K., Murat, C.: Qos-aware automatic syntactic service composition problem: complexity and resolution. Future Gener. Comput. Syst. 80, 311–321 (2018). https://doi.org/10.1016/j.future.2017.04.009

    Article  Google Scholar 

  13. Ghobaei-Arani, M., Souri, A.: Lp-wsc: a linear programming approach for web service composition in geographically distributed cloud environments. J. Supercomput. 75(5), 2603–2628 (2019). https://doi.org/10.1007/s11227-018-2656-3

    Article  Google Scholar 

  14. Hosseinzadeh, M., Hama, H.K., Ghafour, M.Y., Masdari, M., Ahmed, O.H., Khezri, H.: Service selection using multi-criteria decision making: a comprehensive overview. J. Netw. Syst. Manag. 28, 1639–1693 (2020). https://doi.org/10.1007/s10922-020-09553-w

    Article  Google Scholar 

  15. Mashal, I., Alsaryrah, O., Chung, T.-Y., Yang, C.-Z., Kuo, W.-H., Agrawal, D.P.: Choices for interaction with things on internet and underlying issues. Ad Hoc Netw. 28, 68–90 (2015). https://doi.org/10.1016/j.adhoc.2014.12.006

    Article  Google Scholar 

  16. Issarny, V., Bouloukakis, G., Georgantas, N., Billet, B.: Revisiting service-oriented architecture for the iot: a middleware perspective. In: Service-Oriented Computing: 14th International Conference, ICSOC 2016, Banff, AB, Canada, October 10-13, 2016, Proceedings 14, pp. 3–17 (2016). Springer

  17. Jatoth, C., Gangadharan, G., Buyya, R.: Computational intelligence based qos-aware web service composition: a systematic literature review. IEEE Trans. Serv. Comput. 10(3), 475–492 (2015). https://doi.org/10.1109/TSC.2015.2473840

    Article  Google Scholar 

  18. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004). https://doi.org/10.1109/TSE.2004.11

    Article  Google Scholar 

  19. Meyer, H., Weske, M.: Automated service composition using heuristic search. In: International Conference on Business Process Management, pp. 81–96 (2006). https://doi.org/10.1007/11841760_7. Springer

  20. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for qos-aware web service composition. In: 2006 IEEE International Conference on Web Services (ICWS’06), pp. 72–82 (2006). https://doi.org/10.1109/ICWS.2006.69. IEEE

  21. Liu, D., Shao, Z., Yu, C., Fan, G.: A heuristic qos-aware service selection approach to web service composition. In: 2009 Eighth IEEE/ACIS International Conference on Computer and Information Science, pp. 1184–1189 (2009). https://doi.org/10.1109/ICIS.2009.76. IEEE

  22. Li, J., Zhao, Y., Liu, M., Sun, H., Ma, D.: An adaptive heuristic approach for distributed qos-based service composition. In: The IEEE Symposium on Computers and Communications, pp. 687–694 (2010). https://doi.org/10.1109/ISCC.2010.5546721. IEEE

  23. Klein, A., Ishikawa, F., Honiden, S.: Efficient heuristic approach with improved time complexity for qos-aware service composition. In: 2011 IEEE International Conference on Web Services, pp. 436–443 (2011). https://doi.org/10.1109/ICWS.2011.60. IEEE

  24. Kashyap, N., Kumari, A.C.: Hyper-heuristic approach for service composition in internet of things. Electron. Gov. Int. J. 14(4), 321–339 (2018). https://doi.org/10.1504/EG.2018.095546

    Article  Google Scholar 

  25. Ding, Z., Liu, J., Sun, Y., Jiang, C., Zhou, M.: A transaction and qos-aware service selection approach based on genetic algorithm. IEEE Trans. Syst. Man Cybernet. Syst. 45(7), 1035–1046 (2015). https://doi.org/10.1109/TSMC.2015.2396001

    Article  Google Scholar 

  26. Sun, X., Chen, J., Xia, Y., He, Q., Wang, Y., Luo, X., Zhang, R., Han, W., Wu, Q.: A fluctuation-aware approach for predictive web service composition. In: 2018 IEEE International Conference on Services Computing (SCC), pp. 121–128 (2018). https://doi.org/10.1109/SCC.2018.00023. IEEE

  27. Dahan, F., El Hindi, K., Ghoneim, A., Alsalman, H.: An enhanced ant colony optimization based algorithm to solve qos-aware web service composition. IEEE Access 9, 34098–34111 (2021). https://doi.org/10.1109/ACCESS.2021.3061738

    Article  Google Scholar 

  28. Hossain, M.S., Moniruzzaman, M., Muhammad, G., Ghoneim, A., Alamri, A.: Big data-driven service composition using parallel clustered particle swarm optimization in mobile environment. IEEE Trans. Serv. Comput. 9(5), 806–817 (2016). https://doi.org/10.1109/TSC.2016.2598335

    Article  Google Scholar 

  29. Boudries, F., Sadouki, S., Tari, A.: A bio-inspired algorithm for dynamic reconfiguration with end-to-end constraints in web services composition. Serv. Oriented Comput. Appl. 13(3), 251–260 (2019). https://doi.org/10.1007/s11761-019-00257-x

    Article  Google Scholar 

  30. Pavan Kumar, V., Shetty, S., Janardhana, D., Manu, A.: Qos aware service composition in iot using heuristic structure and genetic algorithm. Math. Stat. Eng. Appl. 71(3), 750–766 (2022)

    Google Scholar 

  31. Wang, R., Lu, J.: Qos-aware service discovery and selection management for cloud-edge computing using a hybrid meta-heuristic algorithm in iot. Wirel. Personal Commun. 126(3), 2269–2282 (2022). https://doi.org/10.1007/s11277-021-09052-4

    Article  Google Scholar 

  32. Xu, J., Zhang, J.: Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis. In: Proceedings of the 33rd Chinese Control Conference, pp. 8633–8638 (2014). https://doi.org/10.1109/ChiCC.2014.6896450. IEEE

  33. Morales-Castañeda, B., Zaldivar, D., Cuevas, E., Fausto, F., Rodríguez, A.: A better balance in metaheuristic algorithms: does it exist? Swarm Evolut. Comput. 54, 100671 (2020). https://doi.org/10.1016/j.swevo.2020.100671

    Article  Google Scholar 

  34. Kouicem, A., Khanouche, M.E., Tari, A.: Novel bat algorithm for qos-aware services composition in large scale internet of things. Clust. Comput. 8, 1–15 (2022). https://doi.org/10.1007/s10586-022-03602-6

    Article  Google Scholar 

  35. Khadir, K., Guermouche, N., Guittoum, A., Monteil, T.: A genetic algorithm-based approach for fluctuating qos aware selection of iot services. IEEE Access 10, 17946–17965 (2022). https://doi.org/10.1109/ACCESS.2022.3145853

    Article  Google Scholar 

  36. Zhou, Z., Zhao, D., Liu, L., Hung, P.C.: Energy-aware composition for wireless sensor networks as a service. Future Gener. Comput. Syst. 80, 299–310 (2018). https://doi.org/10.1016/j.future.2017.02.050

    Article  Google Scholar 

  37. Wang, W., Sun, Q., Zhao, X., Yang, F.: An improved particle swarm optimization algorithm for qos-aware web service selection in service oriented communication. Int. J. Comput. Intell. Syst. 3(sup01), 18–30 (2010). https://doi.org/10.1080/18756891.2010.9727750

    Article  Google Scholar 

  38. Yazdani, M., Jolai, F.: Lion optimization algorithm (loa): a nature-inspired metaheuristic algorithm. J. Comput. Des. Engi. 3(1), 24–36 (2016). https://doi.org/10.1016/j.jcde.2015.06.003

    Article  Google Scholar 

  39. Kaliszewski, I., Podkopaev, D.: Simple additive weighting-a metamodel for multiple criteria decision analysis methods. Expert Syst. Appl. 54, 155–161 (2016). https://doi.org/10.1016/j.eswa.2016.01.042

    Article  Google Scholar 

  40. Thangaraj, P., Balasubramanie, P.: Meta heuristic qos based service composition for service computing. J. Ambient Intell. Hum. Comput. 12(5), 5619–5625 (2021). https://doi.org/10.1007/s12652-020-02083-y

    Article  Google Scholar 

  41. Yu, Q., Chen, L., Li, B.: Ant colony optimization applied to web service compositions in cloud computing. Comput. Electr. Eng. 41, 18–27 (2015). https://doi.org/10.1016/j.compeleceng.2014.12.004

    Article  Google Scholar 

  42. Alayed, H., Dahan, F., Alfakih, T., Mathkour, H., Arafah, M.: Enhancement of ant colony optimization for qos-aware web service selection. IEEE Access 7, 97041–97051 (2019). https://doi.org/10.1109/ACCESS.2019.2927769

    Article  Google Scholar 

  43. Wu, Q., Zhu, Q.: Transactional and qos-aware dynamic service composition based on ant colony optimization. Future Gener. Comput. Syst. 29(5), 1112–1119 (2013). https://doi.org/10.1016/j.future.2012.12.010

    Article  Google Scholar 

  44. Xia, H., Chen, Y., Li, Z., Gao, H., Chen, Y.: Web service selection algorithm based on particle swarm optimization. In: 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, pp. 467–472 (2009). https://doi.org/10.1109/DASC.2009.99. IEEE

  45. Ludwig, S.A.: Applying particle swarm optimization to quality-of-service-driven web service composition. In: 2012 IEEE 26th International Conference on Advanced Information Networking and Applications, pp. 613–620 (2012). https://doi.org/10.1109/AINA.2012.46. IEEE

  46. da Silva, A.S., Ma, H., Zhang, M.: A graph-based particle swarm optimisation approach to qos-aware web service composition and selection. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 3127–3134 (2014). https://doi.org/10.1109/CEC.2014.6900404. IEEE

  47. Xu, X., Sheng, Q.Z., Wang, Z., Yao, L., et al.: Novel artificial bee colony algorithms for qos-aware service selection. IEEE Tran. Serv. Comput. 12(2), 247–261 (2016). https://doi.org/10.1109/TSC.2016.2612663

    Article  Google Scholar 

  48. Arunachalam, N., Amuthan, A.: Improved cosine similarity-based artificial bee colony optimization scheme for reactive and dynamic service composition. J. King Saud Univ. Comput. Inform. Sci. 32(10), 1218 (2018). https://doi.org/10.1016/j.jksuci.2018.10.003

    Article  Google Scholar 

  49. Sadouki, S.C., Tari, A.: Multi-objective and discrete elephants herding optimization algorithm for qos aware web service composition. RAIRO-Oper. Res. 53(2), 445–459 (2019). https://doi.org/10.1051/ro/2017049

    Article  MathSciNet  Google Scholar 

  50. Gavvala, S.K., Jatoth, C., Gangadharan, G., Buyya, R.: Qos-aware cloud service composition using eagle strategy. Future Gener. Comput. Syst. 90, 273–290 (2019). https://doi.org/10.1016/j.future.2018.07.062

    Article  Google Scholar 

  51. Yapıcı, H., Çetinkaya, N.: An improved particle swarm optimization algorithm using eagle strategy for power loss minimization. Math. Prob. Eng. (2017). https://doi.org/10.1155/2017/1063045

  52. Asghari, P., Rahmani, A.M., Javadi, H.H.S.: Privacy-aware cloud service composition based on qos optimization in internet of things. J. Ambient Intell. Hum. Comput. 13(11), 1–26 (2020). https://doi.org/10.1007/s12652-020-01723-7

    Article  Google Scholar 

  53. Khansari, M.E., Sharifian, S., Motamedi, S.A.: Virtual sensor as a service: a new multicriteria qos-aware cloud service composition for iot applications. J. Supercomput. 74(10), 5485–5512 (2018). https://doi.org/10.1007/s11227-018-2454-y

    Article  Google Scholar 

  54. Ibrahim, G.J., Rashid, T.A., Akinsolu, M.O.: An energy efficient service composition mechanism using a hybrid meta-heuristic algorithm in a mobile cloud environment. J. Parall. Distrib. Comput. 143, 77–87 (2020). https://doi.org/10.1016/j.jpdc.2020.05.002

    Article  Google Scholar 

  55. Kurdi, H., Ezzat, F., Altoaimy, L., Ahmed, S.H., Youcef-Toumi, K.: Multicuckoo: multi-cloud service composition using a cuckoo-inspired algorithm for the internet of things applications. IEEE Access 6, 56737–56749 (2018). https://doi.org/10.1109/ACCESS.2018.2872744

    Article  Google Scholar 

  56. Hosseinzadeh, M., Tho, Q.T., Ali, S., Rahmani, A.M., Souri, A., Norouzi, M., Huynh, B.: A hybrid service selection and composition model for cloud-edge computing in the internet of things. IEEE Access 8, 85939–85949 (2020). https://doi.org/10.1109/ACCESS.2020.2992262

    Article  Google Scholar 

  57. Kashyap, N., Kumari, A.C., Chhikara, R.: Multi-objective optimization using nsga ii for service composition in iot. Procedia Comput. Sci. 167, 1928–1933 (2020). https://doi.org/10.1016/j.procs.2020.03.214

    Article  Google Scholar 

  58. Cherifi, A., Khanouche, M.E., Amirat, Y., Farah, Z.: A parallel approach for user-centered qos-aware services composition in the internet of things. Eng. Appl. Artif. Intell. 123, 106277 (2023)

    Article  Google Scholar 

  59. Ali, Z.H., Ali, H.A.: Towards sustainable smart iot applications architectural elements and design: opportunities, challenges, and open directions. J. Supercomput. 77, 5668–5725 (2021)

    Article  Google Scholar 

  60. Al-Masri, E., Mahmoud, Q.H.: Qos-based discovery and ranking of web services. In: 2007 16th International Conference on Computer Communications and Networks, pp. 529–534 (2007). https://doi.org/10.1109/ICCCN.2007.4317873. IEEE

  61. Deng, S., Wu, H., Tan, W., Xiang, Z., Wu, Z.: Mobile service selection for composition: an energy consumption perspective. IEEE Trans. Autom. Sci. Eng. 14(3), 1478–1490 (2017). https://doi.org/10.1109/TASE.2015.2438020

    Article  Google Scholar 

Download references

Acknowledgements

This work has been sponsored by the General Directorate for Scientific Research and Technological Development, Ministry of Higher Education and Scientific Research (DGRSDT), Algeria.

Funding

This article received no funding from external sources.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Souhila Ait Hacène Ouhadda.

Ethics declarations

Competing interest

The authors have no conflict of interest to declare for this manuscript.

Ethical Approval

This article does not contain any studies with human participants and/or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Hacène Ouhadda, S., Chibani Sadouki, S., Achroufene, A. et al. A Discrete Adaptive Lion Optimization Algorithm for QoS-Driven IoT Service Composition with Global Constraints. J Netw Syst Manage 32, 34 (2024). https://doi.org/10.1007/s10922-024-09808-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-024-09808-w

Keywords

Navigation