Skip to main content

Advertisement

Log in

Placement Optimization of Virtual Network Functions in a Cloud Computing Environment

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The use of Network Function Virtualization is constantly increasing in Cloud environments, especially for next-generation networks such as 5G. In this context, the definition of a deployment scheme defining for each Virtual Network Function (VNF) the appropriate server in order to meet the quality of service requirements. This problem is known in the literature as virtual fetwork function placement. However, proper deployment of VNFs on servers can minimize the number of servers used, but may increase service latency. In this article, we propose a multi-objective integer linear programming model to solve the problem of network function placement. The objective is to find the best compromise between minimizing end-to-end total latency for users and reducing the number of servers used, while ensuring that the maximum number of VNFs is connected in the network. Our proposal to solve the NP-hard problem involves developing an algorithm based on the Particle Swarm Optimization metaheuristic to obtain a polynomial time resolution. By performing tests on a simple VNF deployment problem, we validated the relevance of our optimization model and demonstrated the effectiveness of our algorithm. The results obtained showed that our method provides feasible solutions very close to the exact optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1

Similar content being viewed by others

References

  1. Sunyaev, A.: Cloud Computing. Springer, Cham (2020)

    Google Scholar 

  2. Wang, B., Qi, Z., Ma, R., Guan, H., Vasilakos, A.V.: A survey on data center networking for cloud computing. Comput. Netw. 91, 528–547 (2015). https://doi.org/10.1016/j.comnet.2015.08.040

    Article  Google Scholar 

  3. Jennings, B., Stadler, R.: Resource management in clouds: survey and research challenges. J. Netw. Syst. Manag. 23, 567–619 (2015). https://doi.org/10.1007/s10922-014-9307-7

    Article  Google Scholar 

  4. Sadiku, M.N.O., Musa, S.M., Momoh, O.D.: Cloud computing: opportunities and challenges. IEEE Potentials 33(1), 34–36 (2014). https://doi.org/10.1109/MPOT.2013.2279684

    Article  Google Scholar 

  5. ETSI: Network function virtualisation white paper 1. SDN and OpenFlow World Congress,2012,Darmstadt, Germany

  6. ETSI: Network functions virtualisation white paper 3. SDN and OpenFlow World Congress,2014,Dusseldorf, Germany

  7. Santos, G.L., Bezerra, D.d.F., Rocha, É.d.S., Ferreira, L., Moreira, A.L.C., Gonçalves, G.E., Marquezini, M.V., Recse, Á., Mehta, A., Kelner, J., et al.: Service function chain placement in distributed scenarios: a systematic review. J. Netw. Syst. Manag (2022) https://doi.org/10.1007/s10922-021-09626-4

  8. Tao, X., Han, Y., Xu, X., Zhang, P., Leung, V.C.M.: Recent advances and future challenges for mobile network virtualization. Sci. Chin. Inform. Sci. 60(4), 1 (2017). https://doi.org/10.1007/s11432-017-9045-1

    Article  Google Scholar 

  9. Yi, B., Wang, X., Li, K., Das, S., Huang, M.: A comprehensive survey of network function virtualization. Comput. Netw. 133, 212–262 (2018). https://doi.org/10.1016/j.comnet.2018.01.021

    Article  Google Scholar 

  10. Moens, H., De Turck, F.: Vnf-p: A model for efficient placement of virtualized network functions. In: 10th International Conference on Network and Service Management (CNSM) and Workshop, pp. 418–423 (2014). IEEE

  11. Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Comput. Archit. 8(3), 1–154 (2013)

    Google Scholar 

  12. Amin, R., Hussain, M., Bilal, M.: Network policies in software defined internet of everything. In: Aujla, G.S., Garg, S., Kaur, K., Sikdar, B. (eds.) Software Defined Internet of Everything, pp. 79–96. Internet of Things, Springer, Cham (2022)

    Chapter  Google Scholar 

  13. Johnson, P., Marker, T.: Data centre energy efficiency product profile. Pitt & Sherry, report to equipment energy efficiency committee (E3) of The Australian Government Department of the Environment, Water, Heritage and the Arts (DEWHA) (2009)

  14. Sinha, R., Purohit, N., Diwanji, H.: Power aware live migration for data centers in cloud using dynamic threshold. Int. J. Comput. Technol. Appl. 2(6), 2041–2046 (2011)

    Google Scholar 

  15. Safieddine, I.: Optimisation d’infrastructures de cloud computing sur des green datacenters. Ph.D. dissertation, Université Grenoble Alpes (2015)

  16. Cziva, R., Anagnostopoulos, C., Pezaros, D.P.: Dynamic, latency-optimal VNF placement at the network edge. In: IEEE Infocom 2018-IEEE Conference on Computer Communications, pp. 693–701 (2018). IEEE

  17. Cziva, R., Pezaros, D.P.: On the latency benefits of edge NFV. In: 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), pp. 105–106 (2017). https://doi.org/10.1109/ancs.2017.23. IEEE

  18. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing—a key technology towards 5G. ETSI White Pap. 11(11), 1–16 (2015)

    Google Scholar 

  19. Cziva, R., Jouet, S., Pezaros, D.P.: Roaming edge vnfs using glasgow network functions. In: Proceedings of the 2016 ACM SIGCOMM Conference, pp. 601–602. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2934872.2959067

  20. Cziva, R., Pezaros, D.P.: Container network functions: bringing NFV to the network edge. IEEE Commun. Mag. 55(6), 24–31 (2017)

    Article  Google Scholar 

  21. Ghai, K.S., Choudhury, S., Yassine, A.: A stable matching based algorithm to minimize the end-to-end latency of edge NFV. Procedia Comput. Sci. 151, 377–384 (2019). https://doi.org/10.1016/j.procs.2019.04.052

    Article  Google Scholar 

  22. Ghai, K.S., Choudhury, S., Yassine, A.: Efficient algorithms to minimize the end-to-end latency of edge network function virtualization. J. Ambient. Intell. Humaniz. Comput. 11(10), 3963–3974 (2020). https://doi.org/10.1007/s12652-019-01630-6

    Article  Google Scholar 

  23. Gupta, A., Habib, M.F., Mandal, U., Chowdhury, P., Tornatore, M., Mukherjee, B.: On service-chaining strategies using virtual network functions in operator networks. Comput. Netw. 133, 1–16 (2018). https://doi.org/10.1016/j.comnet.2018.01.028

    Article  Google Scholar 

  24. Leivadeas, A., Kesidis, G., Ibnkahla, M., Lambadaris, I.: VNF placement optimization at the edge and cloud. Futur. Internet 11(3), 69 (2019). https://doi.org/10.3390/fi11030069

    Article  Google Scholar 

  25. Wang, X., Xing, H., Zhan, D., Luo, S., Dai, P., Iqbal, M.A.: A two-stage approach for multicast-oriented virtual network function placement. Appl. Soft Comput. 112, 107798 (2021). https://doi.org/10.1016/j.asoc.2021.107798

    Article  Google Scholar 

  26. Khoshkholghi, M.A., Gokan Khan, M., Alizadeh Noghani, K., Taheri, J., Bhamare, D., Kassler, A., Xiang, Z., Deng, S., Yang, X.: Service function chain placement for joint cost and latency optimization. Mobile Netw. Appl. 25, 2191–2205 (2020)

    Article  Google Scholar 

  27. Cohen, R., Lewin-Eytan, L., Naor, J.S., Raz, D.: Near optimal placement of virtual network functions. In: 2015 IEEE Conference on Computer Communications (INFOCOM). IEEE (2015). https://doi.org/10.1109/infocom.2015.7218511

  28. Bayati, L.: Data Centers Energy Optimization. PhD thesis, Paris Est (2019)

  29. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-international Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995). IEEE

  30. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1945–1950 (1999). https://doi.org/10.1109/CEC.1999.785511. IEEE

  31. Eberhart, R., Simpson, P., Dobbins, R.: Computational Intelligence PC Tools. Academic Press Professional Inc, USA (1996)

    Google Scholar 

  32. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  33. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  34. Abdelbar, A.M., Abdelshahid, S.: Instinct-based pso with local search applied to satisfiability. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), vol. 3, pp. 2291–2295 (2004). IEEE

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the reviewers for their valuable contributions in shaping this article through their constructive suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Imadeddine Said Conceptualization, Methodology, Writing original draft, Project administration. Lamri Sayad Validation, review & editing, Supervision. Djamil Aissani Validation, review & editing, Supervision.

Corresponding author

Correspondence to Imad Eddine Said.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest related to this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, I.E., Sayad, L. & Aissani, D. Placement Optimization of Virtual Network Functions in a Cloud Computing Environment. J Netw Syst Manage 32, 39 (2024). https://doi.org/10.1007/s10922-024-09812-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-024-09812-0

Keywords