Abstract
The use of Network Function Virtualization is constantly increasing in Cloud environments, especially for next-generation networks such as 5G. In this context, the definition of a deployment scheme defining for each Virtual Network Function (VNF) the appropriate server in order to meet the quality of service requirements. This problem is known in the literature as virtual fetwork function placement. However, proper deployment of VNFs on servers can minimize the number of servers used, but may increase service latency. In this article, we propose a multi-objective integer linear programming model to solve the problem of network function placement. The objective is to find the best compromise between minimizing end-to-end total latency for users and reducing the number of servers used, while ensuring that the maximum number of VNFs is connected in the network. Our proposal to solve the NP-hard problem involves developing an algorithm based on the Particle Swarm Optimization metaheuristic to obtain a polynomial time resolution. By performing tests on a simple VNF deployment problem, we validated the relevance of our optimization model and demonstrated the effectiveness of our algorithm. The results obtained showed that our method provides feasible solutions very close to the exact optimal solutions.


Similar content being viewed by others
References
Sunyaev, A.: Cloud Computing. Springer, Cham (2020)
Wang, B., Qi, Z., Ma, R., Guan, H., Vasilakos, A.V.: A survey on data center networking for cloud computing. Comput. Netw. 91, 528–547 (2015). https://doi.org/10.1016/j.comnet.2015.08.040
Jennings, B., Stadler, R.: Resource management in clouds: survey and research challenges. J. Netw. Syst. Manag. 23, 567–619 (2015). https://doi.org/10.1007/s10922-014-9307-7
Sadiku, M.N.O., Musa, S.M., Momoh, O.D.: Cloud computing: opportunities and challenges. IEEE Potentials 33(1), 34–36 (2014). https://doi.org/10.1109/MPOT.2013.2279684
ETSI: Network function virtualisation white paper 1. SDN and OpenFlow World Congress,2012,Darmstadt, Germany
ETSI: Network functions virtualisation white paper 3. SDN and OpenFlow World Congress,2014,Dusseldorf, Germany
Santos, G.L., Bezerra, D.d.F., Rocha, É.d.S., Ferreira, L., Moreira, A.L.C., Gonçalves, G.E., Marquezini, M.V., Recse, Á., Mehta, A., Kelner, J., et al.: Service function chain placement in distributed scenarios: a systematic review. J. Netw. Syst. Manag (2022) https://doi.org/10.1007/s10922-021-09626-4
Tao, X., Han, Y., Xu, X., Zhang, P., Leung, V.C.M.: Recent advances and future challenges for mobile network virtualization. Sci. Chin. Inform. Sci. 60(4), 1 (2017). https://doi.org/10.1007/s11432-017-9045-1
Yi, B., Wang, X., Li, K., Das, S., Huang, M.: A comprehensive survey of network function virtualization. Comput. Netw. 133, 212–262 (2018). https://doi.org/10.1016/j.comnet.2018.01.021
Moens, H., De Turck, F.: Vnf-p: A model for efficient placement of virtualized network functions. In: 10th International Conference on Network and Service Management (CNSM) and Workshop, pp. 418–423 (2014). IEEE
Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Comput. Archit. 8(3), 1–154 (2013)
Amin, R., Hussain, M., Bilal, M.: Network policies in software defined internet of everything. In: Aujla, G.S., Garg, S., Kaur, K., Sikdar, B. (eds.) Software Defined Internet of Everything, pp. 79–96. Internet of Things, Springer, Cham (2022)
Johnson, P., Marker, T.: Data centre energy efficiency product profile. Pitt & Sherry, report to equipment energy efficiency committee (E3) of The Australian Government Department of the Environment, Water, Heritage and the Arts (DEWHA) (2009)
Sinha, R., Purohit, N., Diwanji, H.: Power aware live migration for data centers in cloud using dynamic threshold. Int. J. Comput. Technol. Appl. 2(6), 2041–2046 (2011)
Safieddine, I.: Optimisation d’infrastructures de cloud computing sur des green datacenters. Ph.D. dissertation, Université Grenoble Alpes (2015)
Cziva, R., Anagnostopoulos, C., Pezaros, D.P.: Dynamic, latency-optimal VNF placement at the network edge. In: IEEE Infocom 2018-IEEE Conference on Computer Communications, pp. 693–701 (2018). IEEE
Cziva, R., Pezaros, D.P.: On the latency benefits of edge NFV. In: 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), pp. 105–106 (2017). https://doi.org/10.1109/ancs.2017.23. IEEE
Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing—a key technology towards 5G. ETSI White Pap. 11(11), 1–16 (2015)
Cziva, R., Jouet, S., Pezaros, D.P.: Roaming edge vnfs using glasgow network functions. In: Proceedings of the 2016 ACM SIGCOMM Conference, pp. 601–602. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2934872.2959067
Cziva, R., Pezaros, D.P.: Container network functions: bringing NFV to the network edge. IEEE Commun. Mag. 55(6), 24–31 (2017)
Ghai, K.S., Choudhury, S., Yassine, A.: A stable matching based algorithm to minimize the end-to-end latency of edge NFV. Procedia Comput. Sci. 151, 377–384 (2019). https://doi.org/10.1016/j.procs.2019.04.052
Ghai, K.S., Choudhury, S., Yassine, A.: Efficient algorithms to minimize the end-to-end latency of edge network function virtualization. J. Ambient. Intell. Humaniz. Comput. 11(10), 3963–3974 (2020). https://doi.org/10.1007/s12652-019-01630-6
Gupta, A., Habib, M.F., Mandal, U., Chowdhury, P., Tornatore, M., Mukherjee, B.: On service-chaining strategies using virtual network functions in operator networks. Comput. Netw. 133, 1–16 (2018). https://doi.org/10.1016/j.comnet.2018.01.028
Leivadeas, A., Kesidis, G., Ibnkahla, M., Lambadaris, I.: VNF placement optimization at the edge and cloud. Futur. Internet 11(3), 69 (2019). https://doi.org/10.3390/fi11030069
Wang, X., Xing, H., Zhan, D., Luo, S., Dai, P., Iqbal, M.A.: A two-stage approach for multicast-oriented virtual network function placement. Appl. Soft Comput. 112, 107798 (2021). https://doi.org/10.1016/j.asoc.2021.107798
Khoshkholghi, M.A., Gokan Khan, M., Alizadeh Noghani, K., Taheri, J., Bhamare, D., Kassler, A., Xiang, Z., Deng, S., Yang, X.: Service function chain placement for joint cost and latency optimization. Mobile Netw. Appl. 25, 2191–2205 (2020)
Cohen, R., Lewin-Eytan, L., Naor, J.S., Raz, D.: Near optimal placement of virtual network functions. In: 2015 IEEE Conference on Computer Communications (INFOCOM). IEEE (2015). https://doi.org/10.1109/infocom.2015.7218511
Bayati, L.: Data Centers Energy Optimization. PhD thesis, Paris Est (2019)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-international Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995). IEEE
Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1945–1950 (1999). https://doi.org/10.1109/CEC.1999.785511. IEEE
Eberhart, R., Simpson, P., Dobbins, R.: Computational Intelligence PC Tools. Academic Press Professional Inc, USA (1996)
Ehrgott, M.: Multicriteria Optimization. Springer, Berlin, Heidelberg (2005)
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)
Abdelbar, A.M., Abdelshahid, S.: Instinct-based pso with local search applied to satisfiability. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), vol. 3, pp. 2291–2295 (2004). IEEE
Acknowledgements
The authors would like to express their sincere gratitude to the reviewers for their valuable contributions in shaping this article through their constructive suggestions.
Author information
Authors and Affiliations
Contributions
Imadeddine Said Conceptualization, Methodology, Writing original draft, Project administration. Lamri Sayad Validation, review & editing, Supervision. Djamil Aissani Validation, review & editing, Supervision.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no Conflict of interest related to this publication.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Said, I.E., Sayad, L. & Aissani, D. Placement Optimization of Virtual Network Functions in a Cloud Computing Environment. J Netw Syst Manage 32, 39 (2024). https://doi.org/10.1007/s10922-024-09812-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10922-024-09812-0