Skip to main content
Log in

Detecting Sybil Attacks in VANET: Exploring Feature Diversity and Deep Learning Algorithms with Insights into Sybil Node Associations

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Vehicular ad hoc networks (VANET) facilitate vehicle to everything (V2X) communication between vehicles and road side units (RSU) to exchange safety and alert messages required for the successful implementation of VANET applications. However, VANET is exposed to Sybil attacks, where malicious vehicles generate multiple false identities to seize control of network resources or create non-existent traffic situations. While several Sybil attack detection mechanisms based on deterministic and learning methods exist, their performance is restricted to particular scenarios. This work proposes a deep learning-based Sybil Attack Detection mechanism. It identifies the Sybil nodes by detecting the associativity between senders at a time instant using common vehicle characteristics, including Euclidean distance, speed, flow, and computed similarity between senders by using the dynamic time warping (DTW) method. Among the five applied deep learning models, the proposed solution achieves improved detection performance through convolutional neural network (CNN) and a combination of CNN with long short-term memory (LSTM) models in varying network scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The VeReMi Extension dataset analysed during the current study is available on GitHub at https://github.com/josephkamel/VeReMi-Dataset.

References

  1. Sakiz, F., Sen, S.: A survey of attacks and detection mechanisms on intelligent transportation systems: Vanets and iov. Ad Hoc Netw. 61, 33–50 (2017)

    Article  Google Scholar 

  2. Gokasar, I., Timurogullari, A., Deveci, M., Garg, H.: Swscav: real-time traffic management using connected autonomous vehicles. ISA Trans. 132, 24–38 (2023)

    Article  Google Scholar 

  3. ITS.: EN 302 637-2—V1.3.2—Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service. ETSI WG5 Technical Specification (2014)

  4. Committee, D., et al.: SAE J2735 Dedicated Short Range Communications (DSRC) Message Set Dictionary. SAE Std, 2735–201 (2015)

  5. Mousavinejad, E., Vlacic, L.: Secure platooning control of automated vehicles under cyber attacks. ISA Trans. 127, 229–238 (2022)

    Article  Google Scholar 

  6. Arif, M., Wang, G., Bhuiyan, M.Z.A., Wang, T., Chen, J.: A survey on security attacks in vanets: communication, applications and challenges. Veh. Commun. 19, 100179 (2019)

    Google Scholar 

  7. Cui, J., Liew, L.S., Sabaliauskaite, G., Zhou, F.: A review on safety failures, security attacks, and available countermeasures for autonomous vehicles. Ad Hoc Netw. 90, 101823 (2019)

    Article  Google Scholar 

  8. Zhang, D., Wang, Q.-G., Feng, G., Shi, Y., Vasilakos, A.V.: A survey on attack detection, estimation and control of industrial cyber-physical systems. ISA Trans. 116, 1–16 (2021)

    Article  Google Scholar 

  9. Al Zamil, M.G., Samarah, S., Rawashdeh, M., Hossain, M.S., Alhamid, M.F., Guizani, M., Alnusair, A.: False-alarm detection in the fog-based internet of connected vehicles. IEEE Trans. Veh. Technol. 68(7), 7035–7044 (2019)

    Article  Google Scholar 

  10. Mangla, C., Rani, S., Herencsar, N.: A misbehavior detection framework for cooperative intelligent transport systems. ISA Trans. 132, 52–60 (2023)

    Article  Google Scholar 

  11. Heijden, R.W., Dietzel, S., Leinmüller, T., Kargl, F.: Survey on misbehavior detection in cooperative intelligent transportation systems. IEEE Commun. Surv. Tutor. 21(1), 779–811 (2018)

    Article  Google Scholar 

  12. Khalil, M., Azer, M.A.: Sybil attack prevention through identity symmetric scheme in vehicular ad-hoc networks. In: 2018 Wireless Days (WD), pp. 184–186 (2018). IEEE

  13. Gu, P., Khatoun, R., Begriche, Y., Serhrouchni, A.: k-nearest neighbours classification based sybil attack detection in vehicular networks. In: 2017 Third International Conference on Mobile and Secure Services (MobiSecServ), pp. 1–6 (2017). IEEE

  14. Anwar, A., Halabi, T., Zulkernine, M.: Cloud-based sybil attack detection scheme for connected vehicles. In: 2019 3rd Cyber Security in Networking Conference (CSNet), pp. 114–121 (2019). IEEE

  15. Zhang, Z., Lai, Y., Chen, Y., Wei, J., Wang, Y.: Detection method to eliminate sybil attacks in vehicular ad-hoc networks. Ad Hoc Networks, 103092 (2023)

  16. So, S., Sharma, P., Petit, J.: Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 564–571 (2018). IEEE

  17. Kamel, J., Kaiser, A., Jemaa, I., Cincilla, P., Urien, P.: CaTch: A Confidence Range Tolerant Misbehavior Detection Approach. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–8 (2019). IEEE

  18. Liu, Y., Xue, H., Zhuang, W., Wang, F., Xu, L., Yin, G.: CT2-MDS: cooperative trust-aware tolerant misbehaviour detection system for connected and automated vehicles. IET Intell. Transport. Syst. 16(2), 218–231 (2022)

    Article  Google Scholar 

  19. Hammi, B., Idir, Y.M., Zeadally, S., Khatoun, R., Nebhen, J.: Is it really easy to detect sybil attacks in c-its environments: a position paper. IEEE Trans. Intell. Transport. Syst. 23(10), 18273–18287 (2022)

    Article  Google Scholar 

  20. Vaughan, N., Gabrys, B.: Comparing and combining time series trajectories using dynamic time warping. Procedia Computer Science 96, 465–474 (2016)

    Article  Google Scholar 

  21. Zaidi, K., Milojevic, M.B., Rakocevic, V., Nallanathan, A., Rajarajan, M.: Host-based intrusion detection for VANETs: a statistical approach to rogue node detection. IEEE Trans. Veh. Technol. 65(8), 6703–6714 (2015)

    Article  Google Scholar 

  22. Ayaida, M., Messai, N., Najeh, S., Ndjore, K.B.: A macroscopic traffic model-based approach for Sybil attack detection in Vanets. Ad Hoc Netw. 90, 101845 (2019)

    Article  Google Scholar 

  23. Paranjothi, A., Atiquzzaman, M.: A statistical Approach for Enhancing Security in VANETs with Efficient Rogue Node Detection using Fog Computing. Digital Communications and Networks (2021)

  24. Yao, Y., Xiao, B., Wu, G., Liu, X., Yu, Z., Zhang, K., Zhou, X.: Multi-channel based sybil attack detection in vehicular ad hoc networks using rssi. IEEE Trans. Mob. Comput. 18(2), 362–375 (2018)

    Article  Google Scholar 

  25. Yao, Y., Xiao, B., Yang, G., Hu, Y., Wang, L., Zhou, X.: Power control identification: a novel sybil attack detection scheme in vanets using rssi. IEEE J. Sel. Areas Commun. 37(11), 2588–602 (2019)

    Article  Google Scholar 

  26. Hu, Q., Fan, X., Shan, A., Wang, Z.: Sybil attack detection method based on timestamp-chain in internet of vehicles. In: 2021 IEEE International Conference on Smart Internet of Things (SmartIoT), pp. 174–178 (2021). IEEE

  27. Alladi, T., Kohli, V., Chamola, V., Yu, F.R.: A deep learning based misbehavior classification scheme for intrusion detection in cooperative intelligent transportation systems. IEEE Trans. Intell. Transport. Syst. 21(1), 65–77 (2020)

    Google Scholar 

  28. Alladi, T., Gera, B., Agrawal, A., Chamola, V., Yu, F.R.: Deepadv: a deep neural network framework for anomaly detection in vanets. IEEE Trans. Veh. Technol. 69(8), 9175–9187 (2021)

    Google Scholar 

  29. Sultana, R., Grover, J., Meghwal, J., Tripathi, M.: Exploiting machine learning and deep learning models for misbehavior detection in vanet. Int. J. Comput. Appl. 44(11), 1024–1038 (2022)

    Google Scholar 

  30. Chen, Y., Lai, Y., Zhang, Z., Li, H., Wang, Y.: Mdfd: a multi-source data fusion detection framework for sybil attack detection in vanets. Comput. Netw. 224, 109608 (2023)

    Article  Google Scholar 

  31. Laouiti, D.E., Ayaida, M., Messai, N., Najeh, S., Najjar, L., Chaabane, F.: Sybil attack detection in vanets using an adaboost classifier. In: 2022 International Wireless Communications and Mobile Computing (IWCMC), pp. 217–222 (2022). IEEE

  32. Azam, S., Bibi, M., Riaz, R., Rizvi, S., Kwon, S.: Collaborative learning based sybil attack detection in vehicular ad-hoc networks (vanets). Sensors 18, 6934 (2022)

    Article  Google Scholar 

  33. Li, W., Zhang, D.: Rssi sequence and vehicle driving matrix based sybil nodes detection in vanet. In: 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN), pp. 763–767 (2019). IEEE

  34. Tulay, H.B., Koksal, C.E.: Robust sybil attack detection in vehicular networks. In: 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp. 1–7 (2021). IEEE

  35. Luo, B., Liu, X., Zhu, Q.: Credibility enhanced temporal graph convolutional network based sybil attack detection on edge computing servers. In: 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 524–531 (2021). IEEE

  36. Kamel, J., Wolf, M., Hei, R.W., Kaiser, A., Urien, P., Kargl, F.: Veremi extension: A dataset for comparable evaluation of misbehavior detection in vanets. In: ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020). IEEE

  37. Lighthill, M.J., Whitham, G.B.: On kinematic waves ii. a theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 229(1178), 317–345 (1955)

  38. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  39. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  40. Olah, C.: Understanding LSTM Networks, https://colah.github.io/posts/2015-08-Understanding-LSTMs (2015). https://colah.github.io/posts/2015-08-Understanding- LSTMs/

  41. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  42. Kamel, J., Ansari, M.R., Petit, J., Kaiser, A., Jemaa, I.B., Urien, P.: Simulation framework for misbehavior detection in vehicular networks. IEEE Trans. Veh. Technol. 69(6), 6631–643 (2020)

    Article  Google Scholar 

  43. Codeca, L., Frank, R., Engel, T.: Luxembourg sumo traffic (lust) scenario: 24 hours of mobility for vehicular networking research. In: 2015 IEEE Vehicular Networking Conference (VNC), pp. 1–8 (2015). IEEE

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.S.: Conceptualization, Methodology, Implementation, Writing - Original Draft, Revision. J.G.: Supervision, Conceptualization, Editing and Review.  M.T.: Supervision, Review. M.S.S.: Implementation. S.T.: Implmentation.

Corresponding author

Correspondence to Jyoti Grover.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, R., Grover, J., Tripathi, M. et al. Detecting Sybil Attacks in VANET: Exploring Feature Diversity and Deep Learning Algorithms with Insights into Sybil Node Associations. J Netw Syst Manage 32, 51 (2024). https://doi.org/10.1007/s10922-024-09827-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-024-09827-7

Keywords