Skip to main content

Advertisement

Log in

On the Deployment Problem of Multiple Drones in Millimeter Wave Systems

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Millimeter wave (mm-Wave) frequency bands have paved the way for wide drone applications to support future wireless networks. This research studies the integration of drone-assisted wireless networks with 5G mm-Wave communications. Two scenarios are considered: the single and multiple drone scenarios. In the first scenario, we aim to find an effective 3D positioning of a single drone that minimizes the overall transmit power required to serve the users. Therefore, we utilize the particle swarm optimization (PSO) algorithm to solve the optimization problem. In the second scenario, a drone’s low transmission power may be inefficient in utilizing a single drone to cover a set of users. To that end, we aim to minimize the number of drones and find efficient 3D placements for the drones required to serve the users. Minimizing the number of drones will reduce operational costs during drones’ wireless network planning and operations. Moreover, it helps operators utilize unused drones to extend wireless coverage. Therefore, we propose the clustering algorithm to solve this optimization problem. Finally, the results of simulations are used to verify the efficacy of the suggested algorithms in our scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Abdel-Malek, M.A., Azab, M.: UAV-fleet management for extended NextG emergency support infrastructure with QoS and cost aware. Internet Things 25, 101043 (2024)

    Article  Google Scholar 

  2. Jin, H., Jin, X., Zhou, Y., Guo, P., Ren, J., Yao, J., Zhang, S.: A survey of energy efficient methods for UAV communication. Veh. Commun. 41, 100594 (2023)

    Google Scholar 

  3. Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L.G., Garcia-Rodriguez, A., Yuan, J.: Survey on UAV cellular communications: practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 21(4), 3417–3442 (2019)

    Article  Google Scholar 

  4. Sabzehali, J., Shah, V.K., Fan, Q., Choudhury, B., Liu, L., Reed, J.H.: Optimizing number, placement, and backhaul connectivity of multi-UAV networks. IEEE Internet Things J. 9(21), 21548–21560 (2022)

    Article  Google Scholar 

  5. Mishra, D., Natalizio, E.: A survey on cellular-connected UAVs: design challenges, enabling 5G/B5G innovations, and experimental advancements. Comput. Netw. 182, 107451 (2020)

    Article  Google Scholar 

  6. Khawaja, W., Guvenc, I., Matolak, D.W., Fiebig, U.-C., Schneckenburger, N.: A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Commun. Surv. Tutor. 21(3), 2361–2391 (2019)

    Article  Google Scholar 

  7. Mozaffari, M., Saad, W., Bennis, M., Nam, Y.-H., Debbah, M.: A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 21(3), 2334–2360 (2019)

    Article  Google Scholar 

  8. Azari, M.M., Rosas, F., Pollin, S.: Cellular connectivity for UAVs: network modeling, performance analysis, and design guidelines. IEEE Trans. Wirel. Commun. 18(7), 3366–3381 (2019)

    Article  Google Scholar 

  9. Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54(5), 36–42 (2016)

    Article  Google Scholar 

  10. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Drone small cells in the clouds: design, deployment and performance analysis. In: 2015 IEEE Global Communications Conference (GLOBECOM), 2015, pp. 1–6 . IEEE(2015)

  11. Lyu, J., Zeng, Y., Zhang, R.: UAV-aided offloading for cellular hotspot. IEEE Trans. Wirel. Commun. 17(6), 3988–4001 (2018)

    Article  Google Scholar 

  12. Li, B., Fei, Z., Zhang, Y.: UAV communications for 5G and beyond: recent advances and future trends. IEEE Internet Things J. 6(2), 2241–2263 (2018)

    Article  Google Scholar 

  13. Khosravi, Z., Gerasimenko, M., Andreev, S., Koucheryavy, Y.: Performance evaluation of UAV-assisted mm-Wave operation in mobility-enabled urban deployments. In: 2018 41st International Conference on Telecommunications and Signal Processing (TSP), 2018, pp. 1–5. IEEE (2018)

  14. Zhao, J., Gao, F., Kuang, L., Wu, Q., Jia, W.: Channel tracking with flight control system for UAV mm-Wave MIMO communications. IEEE Commun. Lett. 22(6), 1224–1227 (2018)

    Article  Google Scholar 

  15. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Mobile Internet of Things: can UAVs provide an energy-efficient mobile architecture? In: 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1–6. IEEE (2016)

  16. Wang, X., Kong, L., Kong, F., Qiu, F., Xia, M., Arnon, S., Chen, G.: Millimeter wave communication: a comprehensive survey. IEEE Commun. Surv. Tutor. 20(3), 1616–1653 (2018)

    Article  Google Scholar 

  17. Zhang, L., Zhao, H., Hou, S., Zhao, Z., Xu, H., Wu, X., Wu, Q., Zhang, R.: A survey on 5G millimeter wave communications for UAV-assisted wireless networks. IEEE Access 7, 117460–117504 (2019)

    Article  Google Scholar 

  18. Polese, M., Zorzi, M.: Impact of channel models on the end-to-end performance of mm-Wave cellular networks. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5. IEEE (2018)

  19. Zeng, Y., Wu, Q., Zhang, R.: Accessing from the sky: a tutorial on UAV communications for 5G and beyond. Proc. IEEE 107(12), 2327–2375 (2019)

    Article  Google Scholar 

  20. Xiao, Z., Xia, P., Xia, X.-G.: Enabling UAV cellular with millimeter-wave communication: potentials and approaches. IEEE Commun. Mag. 54(5), 66–73 (2016)

    Article  MathSciNet  Google Scholar 

  21. Mezzavilla, M., Polese, M., Zanella, A., Dhananjay, A., Rangan, S., Kessler, C., Rappaport, T.S., Zorzi, M.: Public safety communications above 6 GHz: challenges and opportunities. IEEE Access 6, 316–329 (2017)

    Article  Google Scholar 

  22. Rappaport, T.S., Murdock, J.N., Gutierrez, F.: State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99(8), 1390–1436 (2011)

    Article  Google Scholar 

  23. Gapeyenko, M., Bor-Yaliniz, I., Andreev, S., Yanikomeroglu, H., Koucheryavy, Y.: Effects of blockage in deploying mm-Wave drone base stations for 5G networks and beyond. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops), 2018, pp. 1–6. IEEE (2018)

  24. Bor-Yaliniz, R.I., El-Keyi, A., Yanikomeroglu, H.: Efficient 3-D placement of an aerial base station in next generation cellular networks. In: 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1–5. IEEE (2016)

  25. Alzenad, M., El-Keyi, A., Lagum, F., Yanikomeroglu, H.: 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage. IEEE Wirel. Commun. Lett. 6(4), 434–437 (2017)

    Article  Google Scholar 

  26. Shakhatreh, H., Khreishah, A., Alsarhan, A., Khalil, I., Sawalmeh, A., Othman, N.S.: Efficient 3D placement of a UAV using particle swarm optimization. In: 2017 8th International Conference on Information and Communication Systems (ICICS), 2017, pp. 258–263. IEEE (2017)

  27. Alzenad, M., El-Keyi, A., Yanikomeroglu, H.: 3-D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements. IEEE Wirel. Commun. Lett. 7(1), 38–41 (2017)

    Article  Google Scholar 

  28. Shakhatreh, H., Khreishah, A.: Optimal placement of a UAV to maximize the lifetime of wireless devices. In: 2018 14th International Wireless Communications and Mobile Computing Conference (IWCMC), 2018, pp. 1225–1230 . IEEE (2018)

  29. Rahman, S., Kim, G.-H., Cho, Y.-Z., Khan, A.: Positioning of UAVs for throughput maximization in software-defined disaster area UAV communication networks. J. Commun. Netw. 20(5), 452–463 (2018)

    Article  Google Scholar 

  30. Bor-Yaliniz, I., Yanikomeroglu, H.: The new frontier in RAN heterogeneity: multi-tier drone-cells. IEEE Commun. Mag. 54(11), 48–55 (2016)

    Article  Google Scholar 

  31. Kalantari, E., Yanikomeroglu, H., Yongacoglu, A.: On the number and 3D placement of drone base stations in wireless cellular networks. In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016, pp. 1–6. IEEE (2016)

  32. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Optimal transport theory for power-efficient deployment of unmanned aerial vehicles. In: 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1–6. IEEE (2016)

  33. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8), 1647–1650 (2016)

    Article  Google Scholar 

  34. Shakhatreh, H., Khreishah, A., Chakareski, J., Salameh, H.B., Khalil, I.: On the continuous coverage problem for a swarm of UAVs. In: 2016 IEEE 37th Sarnoff Symposium, 2016, pp. 130–135. IEEE (2016)

  35. Sun, J., Masouros, C.: Drone positioning for user coverage maximization. In: 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2018, pp. 318–322. IEEE (2018)

  36. Bai, T., Heath, R.W.: Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans. Wirel. Commun. 14(2), 1100–1114 (2014)

    Article  Google Scholar 

  37. Khawaja, W., Ozdemir, O., Guvenc, I.: UAV air-to-ground channel characterization for mm-Wave systems. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), 2017, pp. 1–5. IEEE (2017)

  38. Akdeniz, M.R., Liu, Y., Samimi, M.K., Sun, S., Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 32(6), 1164–1179 (2014)

    Article  Google Scholar 

  39. Yang, G., Zhang, Y., He, Z., Wen, J., Ji, Z., Li, Y.: Machine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels. IET Microw. Antennas Propag. 13(8), 1113–1121 (2019)

    Article  Google Scholar 

  40. Shakhatreh, H., Khreishah, A., Khalil, I.: Indoor mobile coverage problem using UAVs. IEEE Syst. J. 12(4), 3837–3848 (2018)

    Article  Google Scholar 

  41. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95—international Conference on Neural Networks, 1995, vol. 4, pp. 1942–1948. IEEE (1995)

  42. Naeem, S., Wumaier, A.: Study and implementing k-mean clustering algorithm on English text and techniques to find the optimal value of k. Int. J. Comput. Appl 182(31), 7–14 (2018)

    Google Scholar 

  43. Li, Y., Wu, H.: A clustering method based on k-means algorithm. Phys. Procedia 25, 1104–1109 (2012)

    Article  Google Scholar 

  44. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat, Soc. C 28(1), 100–108 (1979)

    Google Scholar 

Download references

Funding

The authors declare that no financial support was received for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

HS: Methodology, Writing—original draft, Validation, Investigation. WA: Writing—review & editing, Software. SA: Writing—review & editing, Software. KB: Writing—review & editing, Software. KH: Validation, Investigation, Writing—review & editing.

Corresponding author

Correspondence to Hazim Shakhatreh.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhatreh, H., Al-Dagamseh, W., Albasheer, S. et al. On the Deployment Problem of Multiple Drones in Millimeter Wave Systems. J Netw Syst Manage 32, 71 (2024). https://doi.org/10.1007/s10922-024-09849-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-024-09849-1

Keywords