Skip to main content
Log in

Deep Reinforcement Learning-Driven Optimization of End-to-End Key Provision in QKD Systems

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The advent of quantum computing poses significant threats to traditional cryptographic methods, necessitating the development of secure communication techniques such as quantum key distribution (QKD). Despite advancements in QKD, including enhanced fiber optic technologies and multi-key distribution systems, substantial challenges persist in the efficient management of cryptographic keys within QKD networks. Existing heuristic approaches, such as greedy algorithms, often fail to address the complex requirements of key allocation, particularly for provisioning end-to-end keys essential for secure communication between distant nodes. This paper introduces a reinforcement learning (RL)-based method for end-to-end key provisioning in QKD networks. The proposed approach dynamically optimizes key allocation using the state and usage patterns of the network. Specifically, the RL framework integrates graph attention networks and long short-term memory networks to model intricate relationships and temporal dependencies within the network. This integration enables a more efficient and adaptive key distribution. Comparative analyses demonstrate that the RL-based method significantly improves session key availability and allocation efficiency. It outperforms traditional greedy algorithms by minimizing session interruptions and reducing unused quantum keys. These results provide valuable information on the practical implementation of RL-based key provisioning strategies in real-world QKD applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The implementation code and data can be requested from the authors

Notes

  1. The given QKDN is called Didactic I and it will be used in Sect. 5 to illustrate the effectiveness of the proposed approach.

References

  1. Akter, M.S.: Quantum cryptography for enhanced network security: a comprehensive survey of research, developments, and future directions. In: 2023 IEEE International Conference on Big Data (BigData), pp. 5408–5417. IEEE Computer Society, Los Alamitos (2023). https://doi.org/10.1109/BigData59044.2023.10386889

  2. Aleksic, S., Hipp, F., Winkler, D., et al.: Perspectives and limitations of QKD integration in metropolitan area networks. Opt. Express 23(8), 10359 (2015). https://doi.org/10.1364/OE.23.010359

    Article  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  MATH  Google Scholar 

  4. Brassard, G., Lütkenhaus, N., Mor, T., et al.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330–1333 (2000). https://doi.org/10.1103/PhysRevLett.85.1330

    Article  MATH  Google Scholar 

  5. Buchanan, W., Woodward, A.: Will quantum computers be the end of public key encryption? J. Cyber Secur. Technol. 1(1), 1–22 (2017). https://doi.org/10.1080/23742917.2016.1226650

    Article  MATH  Google Scholar 

  6. Cao, Y., Zhao, Y., Wu, Y., et al.: Time-scheduled quantum key distribution (QKD) over WDM networks. J. Lightwave Technol. 36(16), 3382–3395 (2018). https://doi.org/10.1109/JLT.2018.2834949

    Article  MATH  Google Scholar 

  7. Cao, Y., Zhao, Y., Li, J., et al.: Multi-tenant provisioning for quantum key distribution networks with heuristics and reinforcement learning: a comparative study. IEEE Trans. Netw. Serv. Manage. 17(2), 946–957 (2020). https://doi.org/10.1109/TNSM.2020.2964003

    Article  MATH  Google Scholar 

  8. Cao, Y., Zhao, Y., Wang, Q., et al.: The evolution of quantum key distribution networks: on the road to the Qinternet. IEEE Commun. Surv. Tutor. 24(2), 839–894 (2022). https://doi.org/10.1109/COMST.2022.3144219

    Article  MATH  Google Scholar 

  9. Chen, T.Y., Jiang, X., Tang, S.B., et al.: Implementation of a 46-node quantum metropolitan area network. npj Quant. Inf. (2021). https://doi.org/10.1038/s41534-021-00474-3

    Article  MATH  Google Scholar 

  10. Cicconetti, C., Conti, M., Passarella, A.: Request scheduling in quantum networks. IEEE Trans. Quant. Eng. (2021). https://doi.org/10.1109/TQE.2021.3090532

    Article  MATH  Google Scholar 

  11. Diamanti, E., Lo, H.K., Qi, B., et al.: Practical challenges in quantum key distribution. npj Quant. Inf. (2016). https://doi.org/10.1038/npjqi.2016.25

    Article  MATH  Google Scholar 

  12. El-Orany, F.A.A., Wahiddin, M.R.B., Mat-Nor, M.A., et al.: Quantum key distribution in terms of the Greenberger–Horne–Zeilinger state: multi-key generation. Laser Phys. 20(5), 1210–1214 (2010). https://doi.org/10.1134/S1054660X10090124

    Article  MATH  Google Scholar 

  13. Eraerds, P., Walenta, N., Legré, M., et al.: Quantum key distribution and 1 Gbps data encryption over a single fibre. New J. Phys. (2010). https://doi.org/10.1088/1367-2630/12/6/063027

    Article  MATH  Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  MATH  Google Scholar 

  15. Hu, Y., Chen, M., Yang, Z., et al.: Optimization of resource allocation in multi-cell OFDM systems: a distributed reinforcement learning approach. In: 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1–6. IEEE (2020). https://doi.org/10.1109/PIMRC48278.2020.9217276

  16. Huangi, R., Si, J., Shi, J., et al.: Deep-reinforcement-learning-based resource allocation in ultra-dense network. In: 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–5. IEEE (2021). https://doi.org/10.1109/WCSP52459.2021.9613186

  17. International Telecommunication Union: Quantum key distribution networks—software-defined networking control. Tech. Rep. ITU-T Y.3805, International Telecommunication Union (2021)

  18. Kaewpuang, R., Xu, M., Lim, W.Y.B., et al.: Cooperative resource management in quantum key distribution (QKD) networks for semantic communication. arXiv Preprint (2022). arXiv:2209.11957

  19. Kaewpuang, R., Xu, M., Niyato, D., et al.: Stochastic qubit resource allocation for quantum cloud computing. In: NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium, pp. 1–5. IEEE (2023)

  20. Kosmatos, E., Stavdas, A., Lord, A.: Design and implementation of the QKD control and management layers for access network deployments. In: 49th European Conference on Optical Communications (ECOC 2023), pp. 405–408 (2023). https://doi.org/10.1049/icp.2023.2091

  21. Lancho, D., Martinez, J., Elkouss, D., et al.: QKD in standard optical telecommunications networks. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, pp. 142–149 (2010). https://doi.org/10.1007/978-3-642-11731-2_18

  22. Le, L., Nguyen, T.N.: DQRA: deep quantum routing agent for entanglement routing in quantum networks. IEEE Trans. Quant. Eng. 3, 1–12 (2022). https://doi.org/10.1109/TQE.2022.3148667

    Article  MATH  Google Scholar 

  23. Lee, C., Kim, Y., Shim, K., et al.: Key-count differential-based proactive key relay algorithm for scalable quantum-secured networking. J. Opt. Commun. Netw. 15(5), 282–293 (2023). https://doi.org/10.1364/JOCN.478620

    Article  MATH  Google Scholar 

  24. Leung, D., Oppenheim, J., Winter, A.: Quantum network communication-the butterfly and beyond. IEEE Trans. Inf. Theory 56(7), 3478–3490 (2010). https://doi.org/10.1109/TIT.2010.2048442

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, X., Wang, C., Li, Z., et al.: Multi-party quantum key distribution protocol with new bell states encoding mode. Int. J. Theor. Phys. 60(4), 1328–1338 (2021). https://doi.org/10.1007/s10773-021-04758-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Mehic, M., Niemiec, M., Rass, S., et al.: Quantum key distribution: a networking perspective. ACM Comput. Surv. (2020). https://doi.org/10.1145/3402192

    Article  MATH  Google Scholar 

  27. Nurhadi, A.I., Syambas, N.R.: Quantum key distribution (QKD) protocols: a survey. In: 2018 4th International Conference on Wireless and Telematics (ICWT), pp. 1–5 (2018). https://doi.org/10.1109/ICWT.2018.8527822

  28. Poppe, A., Langer, T., Lorunser, T., et al.: Results from the SECOQC quantum-key-distribution network. In: CLEO/Europe—EQEC 2009—European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, pp. 1–1 (2009). https://doi.org/10.1109/CLEOE-EQEC.2009.5192790

  29. Pozzi, M.G., Herbert, S.J., Sengupta, A., et al.: Using reinforcement learning to perform qubit routing in quantum compilers. ACM Trans. Quant. Comput. 3(2), 1–25 (2022). https://doi.org/10.1145/3520434

    Article  MathSciNet  MATH  Google Scholar 

  30. Schmitt-Manderbach, T., Weier, H., Fürst, M., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 10504 (2007). https://doi.org/10.1103/PhysRevLett.98.010504

    Article  MATH  Google Scholar 

  31. Schulman, J., Wolski, F., Dhariwal, P., et al.: Proximal policy optimization algorithms. CoRR (2017). arXiv:1707.06347

  32. Shahidinejad, A., Abawajy, J.: An all-inclusive taxonomy and critical review of blockchain-assisted authentication and session key generation protocols for iot. ACM Comput. Surv. 56(7), 1–38 (2024). https://doi.org/10.1145/3645087

    Article  Google Scholar 

  33. Sharbaf, M.S.: Quantum cryptography: a new generation of information technology security system. In: ITNG 2009—6th International Conference on Information Technology: New Generations, pp. 1644–1648 (2009). https://doi.org/10.1109/ITNG.2009.173

  34. Sharma, P., Gupta, S., Bhatia, V., et al.: Deep reinforcement learning-based routing and resource assignment in quantum key distribution-secured optical networks. IET Quant. Commun. 4(3), 136–145 (2023). https://doi.org/10.1049/qtc2.12063

    Article  MATH  Google Scholar 

  35. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700

  36. SujayKumar Reddy, M., Chandra Mohan, B.: Comprehensive analysis of BB84, a quantum key distribution protocol. arXiv Preprint (2023). arXiv:2312.05609

  37. Tham, M.L., Iqbal, A., Chang, Y.C.: Deep reinforcement learning for resource allocation in 5G communications. In: 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1852–1855. IEEE (2019). https://doi.org/10.1109/APSIPAASC47483.2019.9023112

  38. Tysowski, P.K., Ling, X., Lütkenhaus, N., et al.: The engineering of a scalable multi-site communications system utilizing quantum key distribution (QKD). CoRR (2017). arXiv:1712.02617

  39. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. arXiv Preprint (2023). arXiv:1706.03762

  40. Veličković, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. arXiv Preprint (2018). arXiv:1710.10903

  41. Wang, H., Zhao, Y., Nag, A., et al.: End-to-end quantum key distribution (QKD) from metro to access networks. In: 2020 16th International Conference on the Design of Reliable Communication Networks DRCN 2020, pp. 1–5 (2020). https://doi.org/10.1109/DRCN48652.2020.1570611062

  42. Wang, W., Tamaki, K., Curty, M.: Measurement-device-independent quantum key distribution with leaky sources. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-81003-2

    Article  MATH  Google Scholar 

  43. Wenning, M., Samonaki, M., Patri, S.K., et al.: Multi-layer optimization for QKD and key management networks. J. Opt. Commun. Netw. 15(11), 938–947 (2023). https://doi.org/10.1364/JOCN.503612

    Article  MATH  Google Scholar 

  44. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982). https://doi.org/10.1038/299802a0

    Article  MATH  Google Scholar 

  45. Xiong, J., Zhang, Q., Gatto, A., et al.: Adaptive entanglement routing for quantum networks with cutoff. In: 2023 19th International Conference on Network and Service Management (CNSM), pp. 1–5. IEEE (2023)

  46. Xu, K., Hu, W., Leskovec, J., et al.: How powerful are graph neural networks? CoRR (2018). arXiv:1810.00826

  47. Yao, J., Wang, Y., Li, Q., et al.: An efficient routing protocol for quantum key distribution networks. Entropy 24(7), 911 (2022). https://doi.org/10.3390/e24070911

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, Q., Xu, F., Chen, Y.A., et al.: Large scale quantum key distribution: challenges and solutions. Opt. Express 26(18), 24260 (2018). https://doi.org/10.1364/oe.26.024260

    Article  MATH  Google Scholar 

  49. Zhang, Q., Ayoub, O., Gatto, A., et al.: Routing, channel, key-rate and time-slot assignment for QKD in optical networks. IEEE Trans. Netw. Serv. Manag. (2023). https://doi.org/10.1109/TNSM.2023.3290920

    Article  MATH  Google Scholar 

  50. Zhao, J., Li, Q., Hong, Y., et al.: MetaRockETC: adaptive encrypted traffic classification in complex network environments via time series analysis and meta-learning. IEEE Trans. Netw. Serv. Manage. (2024). https://doi.org/10.1109/TNSM.2024.3350080

    Article  MATH  Google Scholar 

  51. Zuo, Y., Zhao, Y., Xiaosong, Y., et al.: Reinforcement learning-based resource allocation in quantum key distribution networks. In: 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), pp. 1–3 (2020)

Download references

Funding

This research was supported by the Korea Institute of Science and Technology Information (KISTI) (No. K25L5M2C2, 50%) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2023R1A2C1003143, 25%; No. 2018R1A6A1A03025526, 25%).

Author information

Authors and Affiliations

Authors

Contributions

The submission is an original work and has not been submitted for publication elsewhere.

Corresponding author

Correspondence to Youn-Hee Han.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report. We certify that the submission is original work and is not under review at any other publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seok, Y., Kim, JB., Han, YH. et al. Deep Reinforcement Learning-Driven Optimization of End-to-End Key Provision in QKD Systems. J Netw Syst Manage 33, 30 (2025). https://doi.org/10.1007/s10922-025-09902-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-025-09902-7

Keywords