Skip to main content

Advertisement

Log in

Cost-Sensitive Detection of DoS Attacks in Automotive Cybersecurity Using Artificial Neural Networks and CatBoost

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Connected automotive components are increasingly vulnerable to cyberattacks, particularly if they lack adequate protection. The controller area network (CAN), the most widely used communication protocol in vehicle systems, inherently lacks crucial security mechanisms to safeguard data transmission. Enhancing cybersecurity in the automotive sector is therefore vital to detect and prevent potential security breaches. Our research focuses on one of the most common attack types in automotive environments: Denial-of-Service (DoS) attacks, which aim to disrupt service availability. To address this challenge, we present a novel approach that integrates cost-sensitive learning and Optuna-driven hyperparameter optimization to significantly improve the detection of DoS attacks on the CAN network. By incorporating cost-sensitive learning, we tailor the model to minimize the cost of misclassifications, particularly False Negatives, which are critical in cybersecurity contexts. Additionally, Optuna is used to optimize the model’s hyperparameters, ensuring robust and efficient performance. Our proposed framework leverages a pipeline that combines artificial neural networks (ANN) with CatBoost, demonstrating superior performance in detecting DoS attacks. The model achieves outstanding results, as evidenced by high precision, recall, F1-scores, and an impressive AUC-ROC score of 99.99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Abdelaziz, M.T., Radwan, A., Mamdouh, H., et al.: Enhancing network threat detection with random forest-based NIDS and permutation feature importance. J. Netw. Syst. Manag. 33(1), 2 (2025)

    Article  Google Scholar 

  2. Akiba, T., Sano, S., Yanase, T., et al.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631 (2019)

  3. Aljohani, R., Bushnag, A., Alessa, A.: Ai-based intrusion detection for a secure internet of things (IoT). J. Netw. Syst. Manag. 32(3), 56 (2024)

    Article  Google Scholar 

  4. Alshammari, A., Zohdy, M.A., Debnath, D., et al.: Classification approach for intrusion detection in vehicle systems. Wirel. Eng. Technol. 9(4), 79–94 (2018)

    Article  Google Scholar 

  5. Altalbe, A.: Enhanced intrusion detection in in-vehicle networks using advanced feature fusion and stacking-enriched learning. IEEE Access (2023)

  6. Barletta, V., Caivano, D., Nannavecchia, A., et al.: Intrusion detection for in-vehicle communication networks: an unsupervised Kohonen SOM approach. Future Internet 12(7), 119 (2020). https://doi.org/10.3390/fi12070119

    Article  Google Scholar 

  7. Ben Henda, N., Msolli, A., Haggui, I., et al.: Attack detection in IoT network using support vector machine and improved feature selection technique. J. Netw. Syst. Manag. 32(4), 92 (2024)

    Article  Google Scholar 

  8. Bozdal, M., Samie, M., Jennions, I.K.: Winds: a wavelet-based intrusion detection system for controller area network (CAN). IEEE Access 9, 58621–58633 (2021)

    Article  Google Scholar 

  9. Chemmakha, M., Habibi, O., Lazaar, M.: Towards a deep learning approach for IoT attack detection based on a new generative adversarial network architecture and gated recurrent unit. J. Netw. Syst. Manag. 32(4), 96 (2024)

    Article  Google Scholar 

  10. Cherian, M., Varma, S.L.: Secure SDN-IoT framework for DDoS attack detection using deep learning and counter based approach. J. Netw. Syst. Manag. 31(3), 54 (2023)

    Article  Google Scholar 

  11. Derhab, A., Belaoued, M., Mohiuddin, I., et al.: Histogram-based intrusion detection and filtering framework for secure and safe in-vehicle networks. IEEE Trans. Intell. Transp. Syst. 23(3), 2366–2379 (2021)

    Article  Google Scholar 

  12. Dorogush, A.V., Ershov, V., Gulin, A.: Catboost: unbiased boosting with categorical features. arXiv preprint arXiv:1810.11363 (2018)

  13. Elmanaa, I., Sabri, M.A., Abouch, Y., et al.: Efficient roundabout supervision: real-time vehicle detection and tracking on Nvidia Jetson Nano. Appl. Sci. 13(13), 7416 (2023)

    Article  Google Scholar 

  14. Elsayed, M.A., Zincir-Heywood, N.: BoostSec: adaptive attack detection for vehicular networks. J. Netw. Syst. Manag. 32(1), 6 (2024)

    Article  Google Scholar 

  15. Gad, A., Nashat, A., Barkat, T.: Intrusion detection system using machine learning for vehicular ad hoc networks based on ToN-IoT dataset. IEEE Access 9, 142206–142217 (2021)

    Article  Google Scholar 

  16. Gavric, N., Prasad Bhandari, G., Shalaginov, A.: Towards resource-efficient DDoS detection in IoT: leveraging feature engineering of system and network usage metrics. J. Netw. Syst. Manag. 32(4), 69 (2024)

    Article  Google Scholar 

  17. Guimarães, L.C., Couto, R.S.: A performance evaluation of neural networks for botnet detection in the internet of things. J. Netw. Syst. Manag. 32(4), 98 (2024)

    Article  Google Scholar 

  18. Haykin, S.S.: Neural Networks and Learning Machines. Pearson Education (2009)

  19. Jeffane, K., Ibrahimi, K.: Detection and identification of attacks in vehicular ad-hoc network. In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 58–62 (2016)

  20. Karagiannis, D., Argyriou, A.: Jamming attack detection in a pair of RF communicating vehicles using unsupervised machine learning. Veh. Commun. 13, 56–63 (2018). https://www.sciencedirect.com/science/article/pii/S221420961730222X

  21. Khan, J., Lim, D.W., Kim, Y.S.: Intrusion detection system can-bus in-vehicle networks based on the statistical characteristics of attacks. Sensors 23(7), 3554 (2023)

    Article  Google Scholar 

  22. Khraisat, A., Gondal, I., Vamplew, P., et al.: Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2(1), 1–22 (2019)

    Article  Google Scholar 

  23. Kulkarni, D.D., Jaiswal, R.K.: An intrusion detection system using extended Kalman filter and neural networks for IoT networks. J. Netw. Syst. Manag. 31(3), 56 (2023)

    Article  Google Scholar 

  24. Lab, TSK.: Experimental security assessment of Mercedes-Benz cars. Tech. rep., https://keenlab.tencent.com/en/2021/05/12/ (2021)

  25. Lee, H., Jeong, S.H., Kim, H.K.: OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame. In: 2017 15th Annual Conference on Privacy, Security and Trust (PST), pp. 57–5709. https://doi.org/10.1109/PST.2017.00017, (2017)

  26. Linhares, T., Patel, A., Barros, A.L., et al.: SDNtruth: innovative DDoS detection scheme for software-defined networks (SDN). J. Netw. Syst. Manag. 31(3), 55 (2023)

    Article  Google Scholar 

  27. Liu, L., Wang, P., Lin, J., et al.: Intrusion detection of imbalanced network traffic based on machine learning and deep learning. IEEE Access 9, 7550–7563 (2021)

    Article  Google Scholar 

  28. Liu, Y., Xue, H., Zhuang, W., et al.: CT2-MDS: cooperative trust-aware tolerant misbehaviour detection system for connected and automated vehicles. IET Intel. Transp. Syst. 16(2), 218–231 (2022). https://doi.org/10.1049/itr2.12139

    Article  Google Scholar 

  29. Mchergui, A., Moulahi, T., Zeadally, S.: Survey on artificial intelligence (AI) techniques for vehicular ad-hoc networks (VANETs). Veh. Commun. 34, 100403 (2022). https://doi.org/10.1016/j.vehcom.2021.100403

    Article  Google Scholar 

  30. Mejri, M., Ben-Othman, J., Hamdi, M.: Survey on VANET security challenges and possible cryptographic solutions. Veh. Commun. 1(2), 53–66 (2014). https://www.sciencedirect.com/science/article/pii/S2214209614000187

  31. Moundounga, A.R.A., Satori, H.: Stochastic machine learning based attacks detection system in wireless sensor networks. J. Netw. Syst. Manag. 32(1), 17 (2024)

    Article  Google Scholar 

  32. Nabil, N., Najib, N., Abdellah, J.: Leveraging artificial neural networks and LightGBM for enhanced intrusion detection in automotive systems. Arab. J. Sci. Eng. 1–9 (2024)

  33. Nissar, N., Naja, N., Jamali, A.: Securing VANETs: multi-objective intrusion detection with variational autoencoders. IEEE Transactions on Consumer Electronics (2024)

  34. Olufowobi, H., Young, C., Zambreno, J., et al.: SAIDuCANT: specification-based automotive intrusion detection using controller area network (CAN) timing. IEEE Trans. Veh. Technol. 69(2), 1484–1494 (2019)

    Article  Google Scholar 

  35. Quintero González, L.A., Castanheira, L., Marques, J.A., et al.: Bungee-ML: a cross-plane approach for a collaborative defense against DDoS attacks. J. Netw. Syst. Manag. 31(4), 77 (2023)

    Article  Google Scholar 

  36. Raghuwanshi, V., Jain, S.: Denial of service attack in VANET: a survey. Int. J. Eng. Trends Technol. 28(1), 15–20 (2015)

    Article  Google Scholar 

  37. Remya krishnan, P., Koushik, R.: Decentralized distance-based strategy for detection of Sybil attackers and Sybil nodes in VANET. J Netw Syst Manag 32(4), 91 (2024)

  38. RoselinMary, S., Maheshwari, M., Thamaraiselvan, M.: Early detection of dos attacks in VANET using attacked packet detection algorithm (APDA). In: 2013 International Conference on Information Communication and Embedded Systems (ICICES), pp. 237–240 (2013)

  39. Salunkhe, A., Kamble, P.P., Jadhav, R.: Design and implementation of can bus protocol for monitoring vehicle parameters. In: 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 301–304. IEEE (2016)

  40. Seo, E., Song, H.M., Kim, H.K.: GIDS: GAN based intrusion detection system for in-vehicle network. In: 2018 16th Annual Conference on Privacy, Security and Trust (PST), pp. 1–6 (2018). https://doi.org/10.1109/PST.2018.8514157

  41. Sharma, S., Kaul, A.: A survey on intrusion detection systems and honeypot based proactive security mechanisms in VANETs and VANET cloud. Veh. Commun. 12, 138–164 (2018). https://www.sciencedirect.com/science/article/pii/S2214209617302784

  42. Sultana, R., Grover, J., Tripathi, M., et al.: Detecting Sybil attacks in VANET: exploring feature diversity and deep learning algorithms with insights into Sybil node associations. J. Netw. Syst. Manag. 32(3), 1–35 (2024)

    Article  Google Scholar 

  43. Valentini, E.P., Meneguette, R.I., Alsuhaim, A.: An attacks detection mechanism for intelligent transport system. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 2453–2461 (2020)

  44. Venturi, A., Stabili, D., Pollicino, F., et al.: Comparison of machine learning-based anomaly detectors for controller area network. In: IEEE 21st International Symposium on Network Computing and Applications (NCA), vol. 21, pp. 81–88 (2022). https://doi.org/10.1109/NCA57778.2022.10013527

  45. Wickramasinghe, C.S., Marino, D.L., Mavikumbure, H.S., et al.: Rx-ads: Interpretable anomaly detection using adversarial ml for electric vehicle can data. In: IEEE Transactions on Intelligent Transportation Systems (2023)

  46. Zacaron, A.M., Lent, D.M.B., da Silva Ruffo, V.G., et al.: Generative adversarial network models for anomaly detection in software-defined networks. J. Netw. Syst. Manag. 32(4), 93 (2024)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. wrote the main manuscript text. 1–3. All authors reviewed the manuscript.

Corresponding author

Correspondence to Nabil Nissar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nissar, N., Naja, N. & Jamali, A. Cost-Sensitive Detection of DoS Attacks in Automotive Cybersecurity Using Artificial Neural Networks and CatBoost. J Netw Syst Manage 33, 28 (2025). https://doi.org/10.1007/s10922-025-09907-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-025-09907-2

Keywords