Skip to main content

Advertisement

Log in

Lightweight Novel Approach for Collaborative Packet-Based Mitigation of Blackhole Attacks in RPL-Based IoT

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In RPL-based IoT networks, especially at the edge where devices are highly constrained, security challenges are increasingly prominent. The core functionality of RPL does not inherently include mechanisms to detect or mitigate security attacks. Simulations demonstrate that blackhole attacks significantly degrade network performance, reducing Packet Delivery Ratio to as low as 24.74% and increasing latency up to 2.42 s.This paper addresses this gap by proposing a novel lightweight approach for mitigating blackhole attacks using collaborative packet-based detection mechanisms. The proposed solution effectively detects and mitigates these attacks, improving PDR to 88.86%, reducing latency to 0.595 s, and maintaining a minimal memory footprint compared to complex machine learning or heavy cryptographic RPL-based solutions. This study contributes to advancing security solutions tailored for edge-centric IoT environments, ensuring robust and reliable network operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Cheng, J., Yang, Y., Zou, X., et al.: 5G in manufacturing: A literature review and future research. Int. J. Adv. Manuf. Technol. 131, 5637–5659 (2024). https://doi.org/10.1007/s00170-022-08990-y

    Article  Google Scholar 

  2. Jamshidi, M., Yahya, S.I., Nouri, L., Hashemi-Dezaki, H., Rezaei, A., Chaudhary, M.A.: A super-efficient GSM triplexer for 5G-enabled IoT in sustainable smart grid edge computing and the metaverse. Sensors. 23(7) (2023). https://doi.org/10.3390/s23073775

  3. Bartsiokas, I.A., Gkonis, P.K., Kaklamani, D.I., Venieris, I.S.: ML-based radio resource management in 5G and beyond networks: A survey. IEEE Access. 10, 83507–83528 (2022). https://doi.org/10.1109/ACCESS.2022.3196657

    Article  Google Scholar 

  4. Gohar, A., Nencioni, G.: The role of 5G technologies in a smart city: The case for intelligent transportation system. Sustainability. 13(9) (2021). https://doi.org/10.3390/su13095188

  5. Perez, A.J., Siddiqui, F., Zeadally, S., Lane, D.: A review of IoT systems to enable independence for the elderly and disabled individuals. Internet Things. 21 (2023). https://doi.org/10.1016/j.iot.2022.100653

  6. Chataut, R., Phoummalayvane, A., Akl, R.: Unleashing the power of IoT: A comprehensive review of IoT applications and future prospects in healthcare, agriculture, smart homes, smart cities, and industry 4.0. Sensors. 23(16), 7194 (2023). https://doi.org/10.3390/s23167194

    Article  Google Scholar 

  7. Mudholkar, M., Mudholkar, P.: Empowering agricultural ecosystems: Leveraging 5 g iot for enhanced product integrity and sustainable ecological environments. J. Inf. Educ. Res. 4(1) (2024). https://doi.org/10.52783/jier.v4i1.605

  8. Attaran, M.: The impact of 5G on the evolution of intelligent automation and industry digitization. J. Ambient Intell. Hum. Comput. 14, 5977–5993 (2023). https://doi.org/10.1007/s12652-020-02521-x

    Article  Google Scholar 

  9. Bedogni, L., Picone, M., Pietri, M., Mamei, M., Zambonelli, F.: January. Fluid computing in the internet of things: A digital twin approach. In 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC) (pp. 412–418). IEEE. (2024). https://doi.org/10.1109/SGRE59715.2024.10428786

  10. Chi, H.R., de Fátima Domingues, M., Zhu, H., Li, C., Kojima, K., Radwan, A.: Healthcare 5.0: In the perspective of consumer internet-of-things-based fog/cloud computing. IEEE Trans. Consum. Electron. (2023). https://doi.org/10.1109/TCE.2023.3293993

    Article  Google Scholar 

  11. Fur, S., Heithoff, M., Michael, J., Netz, L., Pfeiffer, J., Rumpe, B., Wortmann, A.: Sustainable digital twin engineering for the internet of production. In: Digital twin Driven Intelligent Systems and Emerging Metaverse, pp. 101–121. Springer Nature Singapore., Singapore (2023). https://doi.org/10.1007/978-981-99-0252-1_4

    Chapter  Google Scholar 

  12. Rizwan, A., Ahmad, R., Khan, A.N., Xu, R., Kim, D.H.: Intelligent digital twin for federated learning in aiot networks. Internet Things. 22 (2023). https://doi.org/10.1016/j.iot.2023.100698

  13. Srirama, S.N.: A decade of research in fog computing: Relevance, challenges, and future directions. Software: Pract. Experience. 54(1), 3–23 (2024). https://doi.org/10.1002/spe.3243

    Article  Google Scholar 

  14. Duolikun, D., Enokido, T., Takizawa, M.: February. A flexible fog computing (FTBFC) model to reduce energy consumption of the IoT. In International Conference on Emerging Internetworking, Data & Web Technologies (pp. 256–267). Cham: Springer International Publishing. (2023). https://doi.org/10.1007/978-3-031-26281-4_26

  15. Ansar, S.A., Samriya, J.K., Kumar, M., Gill, S.S., Khan, R.A.: Intelligent Fog-IoT networks with 6G endorsement: Foundations, applications, trends and challenges. In: Kumar, M., Gill, S.S., Samriya, J.K., Uhlig, S. (eds.) 6G Enabled Fog Computing in IoT. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30101-8_12

    Chapter  Google Scholar 

  16. Ruan, Z.: November. Blockchain technology for security issues and challenges in IoT. In 2023 International Conference on Computer Simulation and Modeling, Information Security (CSMIS) (pp. 572–580). IEEE. (2023). https://doi.org/10.1109/CSMIS60634.2023.00108.

  17. Taherdoost, H.: Security and internet of things: Benefits, challenges, and future perspectives. Electronics. 12(8) (2023). https://doi.org/10.3390/electronics12081901

  18. Rejeb, A., Rejeb, K., Appolloni, A., Jagtap, S., Iranmanesh, M., Alghamdi, S., Alhasawi, Y., Kayikci, Y.: Unleashing the power of internet of things and blockchain: A comprehensive analysis and future directions. Internet Things Cyber-Physical Syst. 4, 1–18 (2024). https://doi.org/10.1016/j.iotcps.2023.06.003

    Article  Google Scholar 

  19. Dargaoui, S., Azrour, M., Allaoui, E., Amounas, A., Guezzaz, F., Attou, A., Hazman, H., Benkirane, C., S. and, Bouazza, S.H.: An overview of the security challenges in IoT environment. Advanced technology for smart environment and energy, pp.151–160. (2023). https://doi.org/10.1007/978-3-031-25662-2_13

  20. Kumar, Y., Kumar, V.A.: Systematic review on intrusion detection system in Wireless networks: Variants, attacks, and applications. Wirel. Pers. Commun. 133, 395–452 (2023). https://doi.org/10.1007/s11277-023-10773-x

    Article  Google Scholar 

  21. Heidari, A., Jabraeil Jamali, M.A.: Internet of things intrusion detection systems: A comprehensive review and future directions. Cluster Comput. 26, 3753–3780 (2023). https://doi.org/10.1007/s10586-022-03776-z

    Article  Google Scholar 

  22. Albinali, H., Azzedin, F.: Towards RPL attacks and Mitigation Taxonomy: Systematic literature Review Approach. IEEE Trans. Netw. Serv. Manage. (2024). https://doi.org/10.1109/TNSM.2024.3386468

    Article  Google Scholar 

  23. Panda, N., Supriya, M.: Blackhole Attack Prediction in Wireless Sensor Networks using support Vector Machine. In: Chakravarthy, V., Bhateja, V., Fuentes, F., Anguera, W., Vasavi, J., K.P. (eds.) Advances in Signal Processing, Embedded Systems and IoT. Lecture Notes in Electrical Engineering, vol. 992. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-8865-3_30

    Chapter  Google Scholar 

  24. Reshi, I.A., Sholla, S., Najar, Z.A.: Safeguarding IoT networks: Mitigating black hole attacks with an innovative defense algorithm. J. Eng. Res. 12(1), 133–139 (2024). https://doi.org/10.1016/j.jer.2024.01.014

    Article  Google Scholar 

  25. Rouissat, M., Belkheir, M., Alsukayti, I.S., Mokaddem, A.: A lightweight mitigation approach against a new inundation attack in RPL-based IoT networks. Appl. Sci. 13(18), 10366 (2023). https://doi.org/10.3390/app131810366

    Article  Google Scholar 

  26. Belkheir, M., Rouissat, M., Achraf Boukhobza, A., Mokaddem, M., Bouziani, M.: A new lightweight solution against the version number attack in RPL-based IoT networks. 2022 7th Int. Conf. Image Signal. Process. Their Appl. (ISPA). Mostaganem, Algeria, 1–6 (2022). https://doi.org/10.1109/ISPA54004.2022.9786370

    Article  Google Scholar 

  27. Manasa, K., Leo Joseph, L.M.I.: IoT Security vulnerabilities and defensive measures in industry 4.0. In: Sarveshwaran, V., Chen, J.I.Z., Pelusi, D. (eds.) Artificial Intelligence and Cyber Security in Industry 4.0. Advanced Technologies and Societal Change. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-2115-7_4

    Chapter  Google Scholar 

  28. Aziz Al Kabir, M., Elmedany, W., Sharif, M.S.: Securing IOT devices against emerging security threats: Challenges and mitigation techniques. J. Cyber Secur. Technol. 7(4), 199–223 (2023). https://doi.org/10.1080/23742917.2023.2228053

    Article  Google Scholar 

  29. Omar, A.A.R.A.C., Soudan, B.: A comprehensive survey on detection of sinkhole attack in routing over low power and Lossy network for internet of things. Internet Things. 22 (2023). https://doi.org/10.1016/j.iot.2023.100750

  30. Bala, B., Behal, S.: AI techniques for IoT-based DDoS attack detection: Taxonomies, comprehensive review and research challenges. Comput. Sci. Rev. 52 (2024). https://doi.org/10.1016/j.cosrev.2024.100631

  31. Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J.P., Alexander, R.: RFC 6550: RPL: IPv6 routing protocol for low-power and Lossy Networks. (2012). https://doi.org/10.17487/RFC6550

  32. El Hajjar, A.: Key-pre distribution for the internet of things challenges, threats and recommendations. In: Wireless Networks: Cyber Security Threats and Countermeasures, pp. 1–42. Springer International Publishing., Cham (2023). https://doi.org/10.1007/978-3-031-33631-7_1

    Chapter  Google Scholar 

  33. Rouissat, M., Belkheir, M., Belkhira, H.S., Mokaddem, A., Ziani, D.: Implementing and evaluating a new Silent Rank Attack in RPL-Contiki based IoT networks. J. Electr. Eng. 74(6), 454–462 (2023). https://doi.org/10.2478/jee-2023-0053

    Article  Google Scholar 

  34. Deveci, A., Yilmaz, S., Sen, S.: April. Evolving lightweight intrusion detection systems for RPL-based Internet of Things. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 177–193). Cham: Springer Nature Switzerland. (2023). https://doi.org/10.1007/978-3-031-30229-9_12

  35. Hkiri, A., Karmani, M., Bahri, O.B., Murayr, A.M., Alasmari, F.H., Machhout, M.: RPL-Based IoT networks under decreased Rank Attack: Performance analysis in Static and Mobile environments. Computers Mater. Continua. 78(1) (2024). https://doi.org/10.32604/cmc.2023.047087

  36. Alsukayti, I.S., Alreshoodi, M.: RPL-based IoT networks under simple and complex routing security attacks: An experimental study. Appl. Sci. 13(8) (2023). https://doi.org/10.3390/app13084878

  37. Bokka, R., Sadasivam, T.: Simulation-based Analysis of RPL Routing Attacks and Their Impact on IoT Network Performance, pp. 1–15. Journal of Electronic Testing (2024)

  38. Omar, A.A.R.A., Soudan, B., Altaweel, A.: UOS_IOTSH_2024: A Comprehensive Network Traffic dataset for sinkhole attacks in diverse RPL IoT networks. Data Brief. p110650 (2024). https://doi.org/10.1016/j.dib.2024.110650

  39. Mayzaud, A., Badonnel, R., Chrisment, I.: A taxonomy of attacks in RPL-based internet of things. Int. J. Netw. Secur. 18(3), 459–473 (2016)

    Google Scholar 

  40. Garcia Ribera, E., Martinez Alvarez, B., Samuel, C., Ioulianou, P.P., Vassilakis, V.G.: An intrusion detection system for RPL-based IoT networks. Electronics. 11(23) (2022). https://doi.org/10.3390/electronics11234041

  41. Ahmadi, K., Javidan, R.: A novel RPL defense mechanism based on trust and deep learning for internet of things. J. Supercomput. 80, 16979–17003 (2024). https://doi.org/10.1007/s11227-024-06118-5

    Article  Google Scholar 

  42. Deepavathi, P., Mala, C.I.M.D.R.P.L.: Identifying and eliminating malicious devices using DIO and DAO ICMP control messages in RPL-based protocol. Peer-to-Peer Netw. Appl. 16, 2380–2398 (2023). https://doi.org/10.1007/s12083-023-01539-0

    Article  Google Scholar 

  43. Gnanaprasanambikai, L.: K-means clustering-based Trust (KmeansT) evaluation mechanism for detecting blackhole attacks in IoT environment. Int. J. Comput. Digit. Syst. 16(1), 739–751 (2024). https://doi.org/10.12785/ijcds/160154

    Article  Google Scholar 

  44. Mayzaud, A., Badonnel, R., Chrisment, I.: A distributed monitoring strategy for detecting version number attacks in RPL-based networks. IEEE Trans. Netw. Serv. Manage. 14(2), 472–486 (2017). https://doi.org/10.1109/TNSM.2017.2705290

    Article  Google Scholar 

  45. Mayzaud, A., Badonnel, R., Chrisment, I.: Detecting version number attacks in RPL-based networks using a distributed monitoring architecture. In 2016 12th international conference on network and service management (CNSM) (pp. 127–135). IEEE. (2016)., October https://doi.org/10.1109/CNSM.2016.7818408

  46. Mayzaud, A., Sehgal, A., Badonnel, R., Chrisment, I., Schönwälder, J.: Mitigation of topological inconsistency attacks in RPL-based low‐power lossy networks. Int. J. Network Manage. 25(5), 320–339 (2015). https://doi.org/10.1002/nem.1898

    Article  Google Scholar 

  47. Ibibo, J.T.: October. A Bibliometric Analysis and Comprehensive Overview of Security Attacks Against RPL in IoT Networks. In International Conference on Safety and Security in IoT (pp. 45–59). Cham: Springer Nature Switzerland. (2023). https://doi.org/10.1007/978-3-031-53028-9_4

  48. Khan, M.A., Rais, R.N.B., Khalid, O., Ahmad, S.: Trust-based optimized Reporting for Detection and Prevention of Black Hole Attacks in low-power and Lossy Green IoT Networks. Sensors. 24(6) (2024). https://doi.org/10.3390/s24061775

  49. Sharma, D.K., Dhurandher, S.K., Kumaram, S., Gupta, K.D., Sharma, P.K.: Mitigation of black hole attacks in 6LoWPAN RPL-based Wireless sensor network for cyber physical systems. Comput. Commun. 189, 182–192 (2022). https://doi.org/10.1016/j.comcom.2022.04.003

    Article  Google Scholar 

  50. References 33 and 34 are cited before the equation 1 (, it is calculated as follows: [33-34])

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mohammed Belkheir: Investigation, Methodology, Writing- Original draft preparation, Review & Editing, Conceptualization. Mehdi Rouissat: Investigation, Methodology, Writing- Original draft preparation, Review & Editing, Conceptualization. Allel Mokaddem: Investigation, Methodology, Writing- Original draft preparation, Review & Editing, Conceptualization. Djamila Ziani: Investigation, Methodology, Writing- Original draft preparation, Review & Editing, Conceptualization. Pascal Lorenz: Investigation, Methodology, Writing- Original draft preparation, Review & Editing, Conceptualization.

Corresponding authors

Correspondence to Mehdi Rouissat or Allel Mokaddem.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkheir, M., Rouissat, M., Mokaddem, A. et al. Lightweight Novel Approach for Collaborative Packet-Based Mitigation of Blackhole Attacks in RPL-Based IoT. J Netw Syst Manage 33, 34 (2025). https://doi.org/10.1007/s10922-025-09908-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-025-09908-1

Keywords