Skip to main content
Log in

Capacitated lot sizing and sequence dependent setup scheduling: an iterative approach for integration

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

We consider here the lot sizing and scheduling problem in single-level manufacturing systems. The shop floor is composed of unrelated parallel machines with sequence dependent setup times. We propose an integer programming model embedding precise capacity information due to scheduling constraints in a classical lot-sizing model. We also propose an iterative approach to generate a production plan taking into account scheduling constraints due to changeover setup times. The procedure executes two decision modules per iteration: a lot-sizing module and a scheduling module. The capacitated lot-sizing problem is solved to optimality considering estimated data and aggregate information, and the scheduling problem is solved by a GRASP heuristic. In the proposed scheme the information flow connecting the two levels is managed in each iteration. We report a set of computational experiments and discuss future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management Science, 34, 391–401.

    Article  Google Scholar 

  • Almada-Lobo, B., Klabjan, D., Carravilla, M. A., & Oliveira, J. F. (2007). Single machine multi-product capacitated lot sizing with sequence-dependent setups. International Journal of Production Research, 45, 4873–4894.

    Article  Google Scholar 

  • Anderson, E. J., Glass, C. A., & Potts, C. N. (1997). Machine scheduling. In E. Aarts & J. K. Lenstra (Eds.), Local search in combinatorial optimization (pp. 361–414). New York: Wiley.

    Google Scholar 

  • Belvaux, G., & Wolsey, L. A. (2001). Modelling practical lot-sizing problems as mixed-integer programs. Management Science, 47, 993–1007.

    Article  Google Scholar 

  • Billigton, P. J., McClain, J. O., & Thomas, L. J. (1983). Mathematical approaches to capacity-constrained MRP systems: review, formulation and problem reduction. Management Science, 29, 1129–1141.

    Google Scholar 

  • Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Węglarz, J. (1996). Scheduling computer and manufacturing processes. Berlin: Springer.

    Google Scholar 

  • Clark, A. R., & Clark, S. J. (2000). Rolling-horizon lot-sizing when set-up times are sequence-dependent. International Journal of Production Research, 38, 2287–2307.

    Article  Google Scholar 

  • Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967). Theory of scheduling. Reading: Addison–Wesley.

    Google Scholar 

  • Dauzère-Péres, S., & Lasserre, J.-B. (1993). A modified shifting bottleneck procedure for job-shop scheduling. International Journal of Production Research, 31, 923–932.

    Article  Google Scholar 

  • Dauzère-Péres, S., & Lasserre, J.-B. (1994). Integration of lotsizing and scheduling decisions in a job-shop. European Journal of Operational Research, 75, 413–426.

    Article  Google Scholar 

  • de Araujo, S. A., Arenales, M. N., & Clark, A. R. (2007). Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. Journal of Heuristics, 13, 337–358.

    Article  Google Scholar 

  • de Araujo, S. A., Arenales, M. N., & Clark, A. R. (2008). Lot sizing and furnace scheduling in small foundries. Computers & Operations Research, 35, 916–932.

    Article  Google Scholar 

  • de Carvalho, C. R. V. (1998). Une proposition d’integration de la planification et l’ordonancement de production: application de la métode de benders. PhD Thesis, Laboratoire d’Informatique de Modélisation et d’Optimisation des Systèmes, Université Blaise Pascal, Clermont-Ferrand, France (in French).

  • Diaby, M., Bahl, H. C., Karwan, M. H., & Zionts, S. (1992). A Lagrangean relaxation approach to very large scale capacitated lot-sizing. Management Science, 38, 1329–1340.

    Article  Google Scholar 

  • Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling—Survey and extensions. European Journal of Operational Research, 99, 221–235.

    Article  Google Scholar 

  • Dumas, Y., Desrosiers, J., Gelinas, E., & Solomon, M. M. (1995). An optimal algorithm for the traveling salesman problem with time windows. Operations Research, 43, 367–371.

    Article  Google Scholar 

  • Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133.

    Article  Google Scholar 

  • Ferreira, D., Morabito, R., & Rangel, S. (2009). Solution approaches for the soft drink integrated production lot sizing and scheduling problem. European Journal of Operational Research, 196, 697–706.

    Article  Google Scholar 

  • Fleischmann, B. (1994). The discrete lot-sizing and scheduling problem. European Journal of Operational Research, 75, 395–404.

    Article  Google Scholar 

  • Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. OR Spektrum, 19, 11–21.

    Article  Google Scholar 

  • Haase, K. (1996). Capacitated lot-sizing with sequence dependent setup costs. OR Spektrum, 18, 51–59.

    Article  Google Scholar 

  • Haase, K., & Kimms, A. (2000). Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities. International Journal of Production Economics, 66, 159–169.

    Article  Google Scholar 

  • Jans, R., & Degraeve, Z. (2007). Meta-heuristics for dynamic lot sizing: a review and comparison of solution approaches. European Journal of Operational Research, 177, 1855–1875.

    Article  Google Scholar 

  • Kang, S., Malik, K., & Thomas, L. J. (1999). Lotsizing and scheduling on parallel machines with sequence-dependent setup costs. Management Science, 45, 273–289.

    Article  Google Scholar 

  • Karimi, B., Fatemi Ghomi, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega, 31, 365–378.

    Article  Google Scholar 

  • Karmarkar, U., & Schrage, L. (1985). The deterministic dynamic product cycling problem. Operations Research, 33, 326–345.

    Article  Google Scholar 

  • Krajewski, L. J., & Ritzman, L. P. (1993). Operations management: strategy and analysis (3rd ed.). Reading: Addison–Wesley.

    Google Scholar 

  • Lawler, E. L., Lenstra, J. K., Rinnoy Kan, A. H. G., & Shmoys, D. B. (1993). Sequencing and scheduling: algorithms and complexity. In S. C. Graves, A. H. G. Rinnoy Kan, & P.H. Zipkin (Eds.), Handbooks in operations research and management science: Vol. 4. Logistics of production and inventory (pp. 455–522). Amsterdam: North-Holland.

    Google Scholar 

  • Lasserre, J.-B. (1992). An integrated model for job-shop planning and scheduling. Management Science, 38, 1201–1211.

    Article  Google Scholar 

  • Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8, 219–223.

    Article  Google Scholar 

  • Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation, 8, 3–30.

    Article  Google Scholar 

  • Meyr, H. (2002). Simultaneous lotsizing and scheduling on parallel machines. European Journal of Operational Research, 139, 277–292.

    Article  Google Scholar 

  • Miller, A. J., Nemhauser, G. L., & Savelsbergh, M. W. P. (2000). Solving the multi-item capacitated lot-sizing problem with setup times by branch-and-cut. CORE Discussion Paper 2000/39, CORE, Université Catholique de Louvain, Belgium.

  • Miller, A. J., Nemhauser, G. L., & Savelsbergh, M. W. P. (2003). On the polyhedral structure of a multi-item production planning model with setup times. Mathematical Programming, 94, 375–405.

    Article  Google Scholar 

  • Pinedo, M. (1995). Scheduling: theory, algorithms and systems. New York: Prentice Hall.

    Google Scholar 

  • Pinedo, M. (2005). Planning and scheduling in manufacturing an services. Berlin: Springer.

    Google Scholar 

  • Pochet, Y. (2001). Mathematical programming models and formulations for deterministic production planning problems. In M. Jünger & D. Naddef (Eds.), Lecture notes in computer science: Vol. 2241. Computational combinatorial optimization (pp. 57–111). Berlin: Springer.

    Chapter  Google Scholar 

  • Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer programming. Berlin: Springer.

    Google Scholar 

  • Ravetti, M. G., Rocha, P. L., Mateus, G. R., & Pardalos, P. (2007). A scheduling problem with unrelated parallel machines and sequence dependent setups. International Journal of Operational Research, 2, 380–399.

    Article  Google Scholar 

  • Rocha, P. L., Ravetti, M. G., Mateus, G. R., & Pardalos, P. M. (2008). Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup times. Computers & Operations Research, 35, 1250–1264.

    Article  Google Scholar 

  • Salomon, M., Solomon, M. M., Van Wassenhove, L. N., Dumas, Y., & Dauzère-Pérès, S. (1997). Solving the discrete lotsizing and scheduling problem with sequence dependent set-up costs and set-up times using the traveling salesman problem with time windows. European Journal of Operational Research, 100, 494–513.

    Article  Google Scholar 

  • Toledo, C. F. M., França, P. M., Morabito, R., & Kimms, A. (2009). Multi-population genetic algorithm to solve the synchronized and integrated two-level lot sizing and scheduling problem. International Journal of Production Research, 47, 3097–3119.

    Article  Google Scholar 

  • Toso, E. A. V., Morabito, R., & Clark, A. R. (2009). Lot sizing and sequencing optimisation at an animal-feed plant. Computers & Industrial Engineering. doi:10.1016/j.cie.2009.02.011.

  • Trigeiro, W. W., Thomas, L. J., & McClain, J. O. (1989). Capacitated lot sizing with setup times. Management Science, 35, 353–366.

    Article  Google Scholar 

  • Vollmann, T. E., Berry, W. L., & Whybark, D. C. (1997). Manufacturing planning and control systems (4th ed.). New York: McGraw–Hill.

    Google Scholar 

  • Zhu, X., & Wilhelm, W. E. (2006). Scheduling and lot sizing with sequence-dependent setup: a literature review. IIE Transactions, 38, 987–1007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício C. de Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mateus, G.R., Ravetti, M.G., de Souza, M.C. et al. Capacitated lot sizing and sequence dependent setup scheduling: an iterative approach for integration. J Sched 13, 245–259 (2010). https://doi.org/10.1007/s10951-009-0156-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-009-0156-2