Skip to main content
Log in

Cyclic Flowshop Scheduling with Operators and Robots: Vyacheslav Tanaev’s Vision and Lasting Contributions

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

This note discusses the pioneering role and main contributions of V.S. Tanaev in the field of cyclic robotic flowshop scheduling. Open questions (either explicitly or implicitly) posed in his papers and kept unsolved up to date are exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnetis, A. (2000). Scheduling no-wait robotic cells with two and three machines. European Journal of Operational Research, 123(2), 303–314.

    Article  Google Scholar 

  • Aizenshtat, V. S. (1963). Multi-operator cyclic processes. Doklady of the National Academy of Sciences of Belarus, 7(4), 224–227 (in Russian).

    Google Scholar 

  • Bedini, R., Lisini, G. G., & Sterpos, P. (1979). Optimal programming of working cycles for industrial robots. The ASME Journal of Mechanical Design, 101, 250–257.

    Article  Google Scholar 

  • Blokh, A. Sh., & Tanaev, V. S. (1966). Multioperator processes. Izvstiya Akademii Nauk Belarusi, Seriya Fizika-Matematycnyk Nauk, 2, 5–11 (in Russian).

    Google Scholar 

  • Brauner, N. (2008). Identical part production in cyclic robotic cells: Concepts, overview and open questions. Discrete Applied Mathematics, 156(13), 2480–2492.

    Article  Google Scholar 

  • Che, A., & Chu, C. (2005). A polynomial algorithm for no-wait cyclic hoist scheduling in an extended electroplating line. Operations Research Letters, 33(3), 274–284.

    Article  Google Scholar 

  • Che, A., & Chu, C. (2009). Multi-degree cyclic scheduling of a no-wait robotic cell with multiple robots. European Journal of Operational Research, 199(1), 77–88.

    Article  Google Scholar 

  • Che, A., Chu, C., & Chu, F. (2002a). Multicyclic hoist scheduling with constant processing times. IEEE Transactions on Robotics and Automation, 18(1), 69–80.

    Article  Google Scholar 

  • Che, A., Chu, C., & Levner, E. (2002b). A polynomial algorithm for 2-degree cyclic robot scheduling. European Journal of Operational Research, 145(1), 31–44.

    Article  Google Scholar 

  • Che, A., Yan, P., Yang, N., & Chu, C. (2010a). Optimal cyclic scheduling of a hoist and multi-type parts with fixed processing times. International Journal of Production Research, 48(5), 1225–1243.

    Article  Google Scholar 

  • Che, A., Yan, P., Yang, N., & Chu, C. (2010b). A branch and bound algorithm for optimal cyclic scheduling in a robotic cell with processing time windows. International Journal of Production Research. doi:10.1080/00207540903225205.

    Google Scholar 

  • Chen, H., Chu, C., & Proth, J.-M. (1998). Cyclic scheduling of a hoist with time window constrains. IEEE Transactions on Robotics and Automation, 14, 144–152.

    Article  Google Scholar 

  • Chu, C. (2006). A faster polynomial algorithm for 2-cyclic robotic scheduling. Journal of Scheduling, 9, 453–468.

    Article  Google Scholar 

  • Cuninghame-Green, R. A. (1962). Describing industrial processes with interface and approximating their steady-state behaviour. Operational Research Quarterly, 13, 95–100.

    Article  Google Scholar 

  • Dawande, M. N., Geismer, H. N., & Sethi, S. P. (2005). Dominance of cyclic solutions and challenges in the scheduling of robotic cells. SIAM Review, 47(4), 709–721.

    Article  Google Scholar 

  • Dawande, M. N., Geismer, H. N., Sethi, S. P., & Sriskandarajah, C. (2007). Throughput optimization in robotic cells. New York: Springer.

    Google Scholar 

  • Hanen, C., & Munier-Kordon, A. (1995). A study of the cyclic scheduling problem on parallel processors. Discrete Applied Mathematics, 57(2–3), 167–192.

    Article  Google Scholar 

  • Hanen, C., & Munier-Kordon, A. (2009). Periodic schedules for linear precedence constraints. Discrete Applied Mathematics, 157(2), 280–291.

    Article  Google Scholar 

  • Karp, R. M. (1978). A characterization of the minimum cycle mean in a digraph. Discrete Mathematics, 23, 309–311.

    Google Scholar 

  • Karp, R. M., & Orlin, J. B. (1981). Parametric shortest path algorithms with an application to cyclic staffing. Discrete Applied Mathematics, 3, 37–45.

    Article  Google Scholar 

  • Karzanov, A. V., & Livshits, E. M. (1978). Minimal quantity of operators for serving a homogeneous linear technological process. Automation and Remote Control, 39(3), 445–450.

    Google Scholar 

  • Kats, V., & Levner, E. (1997a). Minimizing the number of robots to meet a given cyclic schedule. Annals of Operations Research, 69, 209–226.

    Article  Google Scholar 

  • Kats, V., & Levner, E. (1997b). A strongly polynomial algorithm for no-wait cyclic robotic flowshop scheduling. Operations Research Letters, 21, 171–179.

    Article  Google Scholar 

  • Kats, V., & Levner, E. (2002). Cyclic scheduling in a robotic production line. Journal of Scheduling, 5(1), 23–41.

    Article  Google Scholar 

  • Kats, V., & Levner, E. (2010). Cyclic routing algorithms in graphs: Performance analysis and applications to robot scheduling. Computers and Industrial Engineering. doi:10.1016/j.cie.2010.04.009.

    Google Scholar 

  • Kats, V., Levner, E., & Meyzin, L. (1999). Multiple-part cyclic hoist scheduling using a sieve method. IEEE Transactions on Robotics and Automation, 15(4), 704–713.

    Article  Google Scholar 

  • Lee, T. E., & Pozner, M. E. (1997). Performance measures and schedules in periodic job shops. Operations Research, 45(1), 72–91.

    Article  Google Scholar 

  • Lei, L., & Wang, T. J. (1989). A proof: the cyclic scheduling problem is NP-complete. Working Paper no. 89-0016, Rutgers University, April.

  • Levner, E., & Kats, V. (1995). Efficient algorithms for cyclic robotic flowshop problem. In R. Storch (Ed.), Proceedings of the international working conference IFIP WG5.7 on managing concurrent manufacturing to improve industrial performance (pp. 115–123). Seattle: University of Washington.

    Google Scholar 

  • Levner, E., Kats, V., & Levit, V. (1997). An improved algorithm for cyclic flowshop scheduling in a robotic cell. European Journal of Operational Research, 197, 500–508.

    Article  Google Scholar 

  • Levner, E., Meyzin, L., & Ptuskin, A. (1998). Periodic scheduling of a transporting robot under incomplete input data: a fuzzy approach. Fuzzy Sets and Systems, 98(3), 255–266.

    Article  Google Scholar 

  • Leung, J. M. Y., & Levner, E. (2006). An efficient algorithm for multi-hoist cyclic scheduling with fixed processing times. Operations Research Letters, 34(4), 465–472.

    Article  Google Scholar 

  • Liu, J., & Jiang, Y. (2005). An efficient optimal solution to the two-hoist no-wait cyclic scheduling problem. Operations Research, 53(2), 313–327.

    Article  Google Scholar 

  • Livshits, E. M., Mikhailetsky, Z. N., & Chervyakov, E. V. (1974). A scheduling problem in an automated flow line with an automated operator. Computational Mathematics and Computerized Systems, 5, 151–155 (in Russian).

    Google Scholar 

  • Megiddo, N. (1979). Combinatorial optimization with rational objective functions. Mathematics of Operations Research, 4, 414–424.

    Article  Google Scholar 

  • Phillips, L. W., & Unger, P. S. (1976). Mathematical programming solution of a hoist scheduling program. AIIE Transactions, 8(2), 219–225.

    Article  Google Scholar 

  • Romanovskii, I. V. (1964). Asymptotic behaviour of recurrence relations of dynamic programming and optimal stationary control. Doklady of the Soviet Academy of Sciences, 157(6), 1303–1306 (in Russian).

    Google Scholar 

  • Romanovskii, I. V. (1967). Optimization of stationary control of a discrete deterministic process. Kybernetika (Cybernetics), 3(2), 66–78.

    Google Scholar 

  • Suprunenko, D. A., Aizenshtat, V. S., & Metel’sky, A. S. (1962). A multistage technological process. Doklady of the National Academy of Sciences of Belarus, 6(9), 541–522 (in Russian).

    Google Scholar 

  • Tanaev, V. S. (1964). A scheduling problem for a flowshop line with a single operator. Inzhenerno-Fizicheskii Zhurnal (Journal of Engineering Physics), 7(3), 111–114 (in Russian).

    Google Scholar 

  • Tanaev, V. S., & Shkurba, V. V. (1975). Introduction to scheduling theory. Moscow: Nauka (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Levner.

Additional information

Dedicated to the memory of Vyacheslav Sergeevich Tanaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kats, V., Levner, E. Cyclic Flowshop Scheduling with Operators and Robots: Vyacheslav Tanaev’s Vision and Lasting Contributions. J Sched 15, 419–425 (2012). https://doi.org/10.1007/s10951-010-0221-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-010-0221-x

Keywords

Navigation