Skip to main content

Advertisement

Log in

Multi-objective scheduling and a resource allocation problem in hospitals

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

This study addresses the issue of scheduling medical treatments for resident patients in a hospital. Schedules are made daily according to the restrictions on medical equipment and physicians who are being assigned at the same time. The problem is formulated as a multi-objective binary integer programming (BIP) model. Three types of metaheuristics are proposed and implemented to deal with the discrete search space, numerous variables, constraints and multiple objectives: a variable neighborhood search (VNS)-based method, scatter search (SS)-based methods and a non-dominated sorting genetic algorithm (NSGA-II). This paper also provides the results of computational experiments and compares their ability to find efficient solutions to the multi-objective scheduling problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5

Similar content being viewed by others

References

  • Beliën, J., & Demeulemeester, E. (2007). Building cyclic master surgery schedules with leveled resulting bed occupancy. European Journal of Operational Research, 176, 1185–1204.

    Article  Google Scholar 

  • Blake, J. T., & Donald, J. (2002). Mount Sinai hospital uses integer programming to allocate operating room time. Interfaces, 32, 63–73.

    Article  Google Scholar 

  • Burke, E. K., Causmaecker, P., & Vanden Berghe, G. (2004a). Novel metaheuristic approaches to nurse rostering problems in Belgian hospitals. In J. Leung (Ed.), Handbook of scheduling: algorithms, models and performance analysis (Vol. 18, pp. 1–44). Boca Raton: CRC Press.

    Google Scholar 

  • Burke, E. K., Causmaecker, P., Vanden Berghe, G., & Van Landeghem, H. (2004b). The state of the art of nurse rostering. Journal of Scheduling, 7, 441–499.

    Article  Google Scholar 

  • Burke, E. K., Curtois, T., Post, G., Qu, R., & Veltman, B. (2008). A hybrid heuristic ordering and variable neighborhood search for the nurse rostering problem. European Journal of Operational Research, 188(2), 330–334.

    Article  Google Scholar 

  • Cardoen, B., Demeulemeester, E., & Beliën, J. (2009a). Optimizing a multiple objective surgical case sequencing problem. International Journal of Production Economics, 119, 354–366.

    Article  Google Scholar 

  • Cardoen, B., Demeulemeester, E., & Beliën, J. (2009b). Sequencing surgical cases in a daycare environment: an exact branch-and-price approach. Computers & Operations Research, 36, 2660–2669.

    Article  Google Scholar 

  • Chern, C. C., Chien, P. S., & Chen, S. Y. (2008). A heuristic algorithm for the hospital health examination scheduling problem. European Journal of Operational Research, 186(3), 1137–1157.

    Article  Google Scholar 

  • Datta, D., Deb, K., & Fonseca, C. M. (2007). Multi-objective evolutionary algorithm for university class timetabling problem. In Evolutionary scheduling (pp. 197–236).

    Chapter  Google Scholar 

  • Deb, K. (2001). Wiley-Interscience series in systems and optimization: Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.

    Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.

    Article  Google Scholar 

  • Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum, 22, 425–460.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1990). Computers and intractability: a guide to the theory of NP-completeness. New York: Freeman.

    Google Scholar 

  • Glover, F. (1998). A template for scatter search and path relinking. In AE ’97: selected papers from the third European conference on artificial evolution (pp. 3–54). London: Springer.

    Google Scholar 

  • Glover, F., Laguna, M., & Martí, R. (2000). Fundamentals of scatter search and path relinking. Control and Cybernetics, 39(3), 653–684.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: principles and applications. European Journal of Operational Research, 130(3), 449–467.

    Article  Google Scholar 

  • Knowles, J., Thiele, L., & Zitzler, E. (2006). A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK report 214, Computer Engineering and Networks Laboratory (TIK), ETH, Zurich.

  • Marcon, E., Kharraja, S., & Simonnet, G. (2003). The operating theatre planning by the follow-up of the risk of no realization. International Journal of Production Economics, 85(1), 83–90.

    Article  Google Scholar 

  • Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097–1100.

    Article  Google Scholar 

  • Molina, J., Laguna, L., Martí, R., & Caballero, R. (2007). SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization. INFORMS Journal on Computing, 19(1), 91–100.

    Article  Google Scholar 

  • Mooney, E. L., & Rardin, R. L. (1993). Tabu search for a class of scheduling problems. Annals of Operations Research, 41(1–4), 253–278.

    Article  Google Scholar 

  • Nebro, A. J., Luna, F., & Alba, E. (2005). New ideas in applying scatter search to multiobjective optimization. In Lecture notes in computer science: Vol. 3410. Third international conference on evolutionary MultiCriterion optimization, EMO 2005 (pp. 443–458). Berlin: Springer.

    Google Scholar 

  • Patterson, P. (1996). What makes a well-oiled scheduling system? OR Manager, 12(9), 19–23.

    Google Scholar 

  • Gomes da Silva, C., Clímaco, C., & Figueira, J. (2006). A scatter search method for bi-criteria {0,1}-knapsack problems. European Journal of Operational Research, 169, 373–391.

    Article  Google Scholar 

  • Tan, Y. Y. (2008). Multi-objective optimization for scheduling elective surgical patients at the health sciences centre in Winnipeg. Master’s thesis. available at. http://hdl.handle.net/1993/3081.

  • Vlah, S., Lukač, Z., & Pacheco, J. (2011). Use of VNS heuristic for scheduling of patients in hospital. Journal of the Operational Research Society, 62, 1227–1238.

    Article  Google Scholar 

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto evolutionary algorithm. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.

    Article  Google Scholar 

Download references

Acknowledgements

José Rui Figueira acknowledges the RENOIR research grant from FCT (PTDC/ GES/73853/2006) and COST Action Research GrantIC0602 on ’Algorithmic Decision Theory’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvija Vlah Jerić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlah Jerić, S., Figueira, J.R. Multi-objective scheduling and a resource allocation problem in hospitals. J Sched 15, 513–535 (2012). https://doi.org/10.1007/s10951-012-0278-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-012-0278-9

Keywords

Navigation