Skip to main content
Log in

Schedule generation scheme for solving multi-mode resource availability cost problem by modified particle swarm optimization

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

The resource availability cost problem (RACP) (Möhring, Operations Research, 32:89–120, 1984) is commonly encountered in project scheduling. RACP aims to minimize the resource availability cost of a project by a given project deadline. In this study, RACP is extended from a single mode to a multi-mode called multi-mode RACP (MMRACP), which is more complicated than RACP but more convenient in practice. To solve MMRACP efficiently, forward activity list (FAL), a schedule generation scheme, is proposed. Heuristic algorithms are designed according to the characteristics of FAL to repair infeasible solutions and to improve the fitness of the solution. Modified particle swarm optimization (MPSO), which combines the advantages of particle swarm optimization and scatter search, is proposed to make the search for the best solution efficient. Computational experiments involving 180 instances are performed to validate the performance of the proposed algorithm. The results reveal that MPSO using FAL is a very effective method to solve MMRACP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfandari, L., Plateau, A., & Tolla, P. (2001). A two-phase path-relinking algorithm for the generalized assignment problem. Proceedings of the Fourth Metaheuristics International Conference, Porto.

  • Alvarez, A. M., González-Velarde, J. L., & De-Alba, K. (2005). GRASP embedded scatter search for the multicommodity capacitated network design problem. Journal of Heuristics, 11(3), 233–257.

    Article  Google Scholar 

  • Barrios, A., Ballestín, F., & Valls, V. (2011). A double genetic algorithm for the MRCPSP/max. Computers & Operations Research, 38(1), 33–43.

    Article  Google Scholar 

  • Chen, T., Zhang, B., Hao, X., & Dai, Y. (2006, July). Task scheduling in grid based on particle swarm optimization. Fifth IEEE International Symposium on Parallel and Distributed Computing, ISPDC’06 (pp. 238–245).

  • Chen, R. M., Wu, C. L., Wang, C. M., & Lo, S. T. (2010). Using novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIB. Expert Systems with Applications, 37(3), 1899–1910.

    Article  Google Scholar 

  • Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.

    Article  Google Scholar 

  • Damak, N., Jarboui, B., Siarry, P., & Loukil, T. (2009). Differential evolution for solving multi-mode resource-constrained project scheduling problems. Computers & Operations Research, 36(9), 2653–2659.

    Article  Google Scholar 

  • Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Reactive scheduling in the multi-mode RCPSP. Computers & Operations Research, 38(1), 63–74.

    Article  Google Scholar 

  • Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8(1), 156–166.

    Article  Google Scholar 

  • Glover, F. (1998). A template for scatter search and path relinking. In J.-K. Hao (Ed.), Artificial evolution (pp. 1–51). Berlin: Springer.

    Chapter  Google Scholar 

  • Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of IEEE international conference on neural networks, 4, 1942–1948.

    Article  Google Scholar 

  • Khorasani, J. (2012). A new heuristic approach for unit commitment problem using particle swarm optimization. Arabian Journal for Science and Engineering, 37(4), 1033–1042.

    Article  Google Scholar 

  • Kolisch, R., & Sprecher, A. (1997). PSPLIB-a project scheduling problem library: OR software-ORSEP operations research software exchange program. European Journal of Operational Research, 96(1), 205–216.

    Article  Google Scholar 

  • Laguna, M., & Martín, R. (2003). Scatter search: methodology and implementations in C. Kluwer: Springer.

    Book  Google Scholar 

  • Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2008). A tabu search procedure for developing robust predictive project schedules. International Journal of Production Economics, 111(2), 493–508.

    Article  Google Scholar 

  • Liu, Y. H. (2006). A scatter search based approach with approximate evaluation for the heterogeneous probabilistic traveling salesman problem. IEEE Congress on InEvolutionary Computation, CEC 2006 (pp. 1603–1609).

  • López, F. C. G., Torres, M. G., Pérez, J. A. M., & Vega, J. M. M. (2004). Scatter search for the feature selection problem. In R. Conejo (Ed.), Current topics in artificial intelligence (pp. 517–525). Berlin: Springer.

    Chapter  Google Scholar 

  • Lova, A., Tormos, P., Cervantes, M., & Barber, F. (2009). An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. International Journal of Production Economics, 117(2), 302–316.

    Article  Google Scholar 

  • Luo, X., Wang, D., Tang, J., & Tu, Y. (2006). An improved PSO algorithm for resource-constrained project scheduling problem, intelligent control and automation, 2006. The Sixth World Congress on WCICA, 2006(1), 3514–3518.

    Google Scholar 

  • Maghsoudi, M. J., Ibrahim, Z., Buyamin, S., & Rahmat, M. F. A. (2012). Data clustering for the DNA computing readout method implemented on LightCycler and based on particle swarm optimization. Arabian Journal for Science and Engineering, 37(3), 697–707.

    Article  Google Scholar 

  • Möhring, R. H. (1984). Minimizing costs of resource requirements in project networks subject to a fixed completion time. Operations Research, 32(1), 89–120.

    Article  Google Scholar 

  • Neumann, K., Nübel, H., & Schwindt, C. (2000). Active and stable project scheduling. Mathematical Methods of Operations Research, 52(3), 441–465.

    Google Scholar 

  • Orosz, J. E., & Jacobson, S. H. (2002). Analysis of static simulated annealing algorithms. Journal of Optimization theory and Applications, 115(1), 165–182.

    Article  Google Scholar 

  • Ozdamar, L. (1999). A genetic algorithm approach to a general category project scheduling problem. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 29(1), 44–59.

    Article  Google Scholar 

  • Pardalos, P. M., & Resende, M. G. (Eds.). (2002). Handbook of applied optimization. Oxford: Oxford University Press.

    Google Scholar 

  • Parsopoulos, K. E., & Vrahatis, M. N. (2004). On the computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 211–224.

    Article  Google Scholar 

  • Van Peteghem, V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409–418.

    Article  Google Scholar 

  • Ranjbar, M., Kianfar, F., & Shadrokh, S. (2008). Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm. Applied Mathematics and Computation, 196(2), 879–888.

    Article  Google Scholar 

  • Rodrigues, S. B., & Yamashita, D. S. (2010). An exact algorithm for minimizing resource availability costs in project scheduling. European Journal of Operational Research, 206(3), 562–568.

    Article  Google Scholar 

  • Russell, R. A., & Chiang, W. C. (2006). Scatter search for the vehicle routing problem with time windows. European Journal of Operational Research, 169(2), 606–622.

    Article  Google Scholar 

  • Santana-Quintero, L. V., Ramírez, N., & Coello, C. C. (2006). A multi-objective particle swarm optimizer hybridized with scatter search. In A. Gelbukh & C. A. Reyes-Garcia (Eds.), MICAI 2006: advances in artificial intelligence (pp. 294–304). Berlin: Springer.

    Chapter  Google Scholar 

  • Shadrokh, S., & Kianfar, F. (2007). A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. European Journal of Operational Research, 181(1), 86–101.

    Article  Google Scholar 

  • Shou, Y.-Y. (2010). Resource-constrained multi-project scheduling models and methods. Hangzhou: Zhejiang University Press.

    Google Scholar 

  • Speranza, M. G., & Vercellis, C. (1993). Hierarchical models for multi-project planning and scheduling. European Journal of Operational Research, 64(2), 312–325.

    Article  Google Scholar 

  • Sprecher, A., Hartmann, S., & Drexl, A. (1997). An exact algorithm for project scheduling with multiple modes. Operations-Research-Spektrum, 19(3), 195–203.

    Google Scholar 

  • Thomas, P. R., & Salhi, S. (1998). A tabu search approach for the resource constrained project scheduling problem. Journal of Heuristics, 4(2), 123–139.

    Article  Google Scholar 

  • Toklu, Y. C. (2002). Application of genetic algorithms to construction scheduling with or without resource constraints. Canadian Journal of Civil Engineering, 29(3), 421–429.

    Article  Google Scholar 

  • Triki, E., Collette, Y., & Siarry, P. (2005). A theoretical study on the behavior of simulated annealing leading to a new cooling schedule. European Journal of Operational Research, 166(1), 77–92.

    Article  Google Scholar 

  • Valls, V., Laguna, M., Lino, P., Pérez, A., & Quintanilla, S. (1999). Project scheduling with stochastic activity interruptions. In J. Wȩglarz (Ed.), Project scheduling (pp. 333–353). Kluwer: Springer.

    Chapter  Google Scholar 

  • Yamashita, D. S., Armentano, V. A., & Laguna, M. (2006). Scatter search for project scheduling with resource availability cost. European Journal of Operational Research, 169(2), 623–637.

    Article  Google Scholar 

  • Zhang, C., Sun, J., Zhu, X., & Yang, Q. (2008). An improved particle swarm optimization algorithm for flowshop scheduling problem. Information Processing Letters, 108(4), 204–209.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the associate editor and anonymous referees for their valuable comments. This research was partially supported by the National Natural Science Foundation of China under Grants 71371181, 71201166, and 71201170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, JJ., Liu, YJ., Jiang, P. et al. Schedule generation scheme for solving multi-mode resource availability cost problem by modified particle swarm optimization. J Sched 18, 285–298 (2015). https://doi.org/10.1007/s10951-014-0374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-014-0374-0

Keywords

Navigation