Skip to main content

Advertisement

Log in

A genetic algorithm for the robust resource leveling problem

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

The resource leveling problem (RLP) involves the determination of a project baseline schedule that specifies the planned activity starting times while satisfying both the precedence constraints and the project deadline constraint under the objective of minimizing the variation in the resource utilization. However, uncertainty is inevitable during project execution. The baseline schedule generated by the deterministic RLP model tends to fail to achieve the desired objective when durations are uncertain. We study the robust resource leveling problem in which the activity durations are stochastic and the objective is to obtain a robust baseline schedule that minimizes the expected positive deviation of both resource utilizations and activity starting times. We present a genetic algorithm for the robust RLP. In order to demonstrate the effectiveness of our genetic algorithm, we conduct extensive computational experiments on a large number of randomly generated test instances and investigate the impact of different factors (the marginal cost of resource usage deviations, the marginal cost of activity starting time deviations, the activity duration variability, the due date, the order strength, the resource factor and the resource constrainedness).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahuja, H. N. (1976). Construction performance control by networks. New York: Wiley.

    Google Scholar 

  • Ashuri, B., & Tavakolan, M. (2012). Fuzzy enabled hybrid genetic algorithm-particle swarm optimization approach to solve TCRO problems in construction project planning. Journal of Construction Engineering and Management, 138(9), 1065–1074.

    Article  Google Scholar 

  • Ballestín, F. (2007). When it is worthwhile to work with the stochastic RCPSP? Journal of Scheduling, 10(3), 153–166.

    Article  Google Scholar 

  • Ballestín, F., Schwindt, C., & Zimmermann, J. (2007). Resource leveling in make-to-order production: Modeling and heuristic solution method. International Journal of Operations Research, 4(1), 50–62.

    Google Scholar 

  • Bandelloni, M., Tucci, M., & Rinaldi, R. (1994). Optimal resource leveling using non-serial dyanamic programming. European Journal of Operational Research, 78(2), 162–177.

    Article  Google Scholar 

  • Burgess, A. R., & Killebrew, J. B. (1962). Variation in activity level on a cyclic arrow diagram. Journal of Industrial Engineering, 13(2), 76–83.

    Google Scholar 

  • Chan, W. T., Chua, D. K., & Kannan, G. (1996). Construction resource scheduling with genetic algorithms. Journal of Construction Engineering and Management, 122(2), 125–132.

    Article  Google Scholar 

  • Debels, D., & Vanhoucke, M. (2007). A decomposition-based genetic algorithm for the resource-constrained project-scheduling problem. Operations Research, 55(3), 457–469.

    Article  Google Scholar 

  • Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Proactive policies for the stochastic resource-constrained project scheduling problem. European Journal of Operational Research, 214(2), 308–316.

    Article  Google Scholar 

  • Demeulemeester, E. L., & Herroelen, W. (2002). Project scheduling: A research handbook. Boston: Kluwer Academic Pub.

    Google Scholar 

  • Demeulemeester, E. L., & Herroelen, W. (2011). Robust project scheduling (Vol. 3, No. 3–4). Delft: Now Publishers Inc.

    Google Scholar 

  • Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). RanGen: A random network generator for activity-on-the-node networks. Journal of Scheduling, 6(1), 17–38.

    Article  Google Scholar 

  • Easa, S. M. (1989). Resource leveling in construction by optimization. Journal of Construction Engineering and Management, 115(2), 302–316.

    Article  Google Scholar 

  • El-Rayes, K., & Jun, D. H. (2009). Optimizing resource leveling in construction projects. Journal of Construction Engineering and Management, 135(11), 1172–1180.

    Article  Google Scholar 

  • Gather, T., Zimmermann, J., & Bartels, J. H. (2011). Exact methods for the resource levelling problem. Journal of Scheduling, 14(6), 557–569.

    Article  Google Scholar 

  • Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems, 3, 493–530.

    Google Scholar 

  • Hariga, M., & El-Sayegh, S. M. (2011). Cost optimization model for the multiresource leveling problem with allowed activity splitting. Journal of Construction Engineering and Management, 137(1), 56–64.

    Article  Google Scholar 

  • Harris, R. B. (1990). Packing method for resource leveling (PACK). Journal of Construction Engineering and Management, 116(2), 331–350.

    Article  Google Scholar 

  • Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling under resource constraints. Naval Research Logistics, 49(5), 433–448.

    Article  Google Scholar 

  • Herroelen, W., & De Reyck, B. (1999). Phase transitions in project scheduling. Journal of the Operational Research Society, 50(2), 148–156.

    Article  Google Scholar 

  • Herroelen, W., De Reyck, B., & Demeulemeester, E. (2000). On the paper “Resource-constrained project scheduling: Notation, classification, models and methods” by Brucker et al. European Journal of Operational Research, 128(3), 221–230.

    Google Scholar 

  • Herroelen, W., & Leus, R. (2004a). Robust and reactive project scheduling: A review and classification of procedures. International Journal of Production Research, 42(8), 1599–1620.

    Article  Google Scholar 

  • Herroelen, W., & Leus, R. (2004b). The construction of stable project baseline schedules. European Journal of Operational Research, 156(3), 550–565.

    Article  Google Scholar 

  • Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289–306.

    Article  Google Scholar 

  • Ke, H., & Liu, B. (2005). Project scheduling problem with stochastic activity duration times. Applied Mathematics and Computation, 168(1), 342–353.

    Article  Google Scholar 

  • Kelley, J. E., & Walker, M. R. (1959). Critical-path planning and scheduling. In Proceedings of the Eastern Joint Computer Conference (pp. 160–173).

  • Kolisch, R., & Sprecher, A. (1997). PSPLIB: A project scheduling problem library. European Journal of Operational Research, 96(1), 205–216.

    Article  Google Scholar 

  • Kreter, S., Rieck, J., & Zimmermann, J. (2014). The total adjustment cost problem: Applications, models, and solution algorithms. Journal of Scheduling, 17(2), 145–160.

    Article  Google Scholar 

  • Lamas, P., & Demeulemeester, E. (2015). A purely proactive scheduling procedure for the resource-constrained project scheduling problem with stochastic activity durations. Journal of Scheduling, 1–20. doi:10.1007/s10951-015-0423-3.

  • Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2008). Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. Journal of Scheduling, 11(2), 121–136.

    Article  Google Scholar 

  • Leu, S. S., Chen, A. T., & Yang, C. H. (1999). A fuzzy optimal model for construction resource leveling scheduling. Canadian Journal of Civil Engineering, 26(6), 673–684.

    Article  Google Scholar 

  • Leu, S. S., Yang, C. H., & Huang, J. C. (2000). Resource leveling in construction by genetic algorithm-based optimization and its decision support system application. Automation in Construction, 10(1), 27–41.

    Article  Google Scholar 

  • Leu, S. S., & Hung, T. H. (2002). An optimal construction resource leveling scheduling simulation model. Canadian Journal of Civil Engineering, 29(2), 267–275.

    Article  Google Scholar 

  • Li, H., Xu, Z., & Demeulemeester, E. (2015). Scheduling policies for the stochastic resource leveling problem. Journal of Construction Engineering and Management, 141(2), 04014072.

    Article  Google Scholar 

  • Liu, B. (2009). Stochastic programming. Theory and practice of uncertain programming (2nd ed., pp. 25–56). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Masmoudi, M., & Haït, A. (2013). Project scheduling under uncertainty using fuzzy modelling and solving techniques. Engineering Applications of Artificial Intelligence, 26(1), 135–149.

    Article  Google Scholar 

  • Neumann, K., & Zimmermann, J. (1999). Resource levelling for projects with schedule-dependent time windows. European Journal of Operational Research, 117(3), 591–605.

    Article  Google Scholar 

  • Neumann, K., & Zimmermann, J. (2000). Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. European Journal of Operational Research, 127(2), 425–443.

    Article  Google Scholar 

  • Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project scheduling with time windows and scarce resources. Berlin: Springer.

    Book  Google Scholar 

  • Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161–172.

    Article  Google Scholar 

  • Ranjbar, M. (2013). A path-relinking metaheuristic for the resource levelling problem. Journal of the Operational Research Society, 64(7), 1071–1078.

    Article  Google Scholar 

  • Rieck, J., Zimmermann, J., & Gather, T. (2012). Mixed-integer linear programming for resource leveling problems. European Journal of Operational Research, 221(1), 27–37.

    Article  Google Scholar 

  • Tang, L., Zhao, Y., & Liu, J. (2014). An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Transactions on Evolutionary Computation, 18(2), 209–225.

    Article  Google Scholar 

  • Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 185(2), 495–508.

    Article  Google Scholar 

  • Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97(2), 227–240.

    Article  Google Scholar 

  • Van de Vonder, S., Ballestin, F., Demeulemeester, E., & Herroelen, W. (2007a). Heuristic procedures for reactive project scheduling. Computers & Industrial Engineering, 52(1), 11–28.

    Article  Google Scholar 

  • Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2007b). A classification of predictive-reactive project scheduling procedures. Journal of Scheduling, 10(3), 195–207.

    Article  Google Scholar 

  • Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2008). Proactive heuristic procedures for robust project scheduling: An experimental analysis. European Journal of Operational Research, 189(3), 723–733.

    Article  Google Scholar 

  • Wiest, J., & Levy, F. (1977). A management guide to PERT/CPM. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Wullink, G., Gademann, A. J. R. M., Hans, E. W., & Van Harten, A. (2004). Scenario-based approach for flexible resource loading under uncertainty. International Journal of Production Research, 42(24), 5079–5098.

    Article  Google Scholar 

  • Wullink, G. (2005). Resource loading under uncertainty. PhD thesis, University of Twente.

  • Zahraie, B., & Tavakolan, M. (2009). Stochastic time-cost-resource utilization optimization using nondominated sorting genetic algorithm and discrete fuzzy sets. Journal of Construction Engineering and Management, 135(11), 1162–1171.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for providing valuable suggestions that have improved the quality of this paper. The research of Hongbo Li is supported by the Research Center for Operations Management of the KU Leuven, the National Natural Science Foundation of China under Grant No. 71271019, the China Postdoctoral Science Foundation under Grant No. 2015M571542, the Humanities and Social Sciences Foundation of the Ministry of Education of China under grant 15YJCZH077 and a scholarship from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Demeulemeester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Demeulemeester, E. A genetic algorithm for the robust resource leveling problem. J Sched 19, 43–60 (2016). https://doi.org/10.1007/s10951-015-0457-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-015-0457-6

Keywords

Navigation