Skip to main content
Log in

The complexity of CO-agent scheduling to minimize the total completion time and total number of tardy jobs

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

In this paper, we revisit a two-agent scheduling problem on a single machine. In this problem, we have two competing agents A and B, which means that the job set of agent A and the job set of agent B are disjoint. The objective is to minimize the total completion time of agent A, under the constraint that the total number of tardy jobs of agent B is no larger than a given bound. The complexity of this problem was posed as open in Agnetis et al. (Oper Res 52:229–242, 2004). Leung et al. (Oper Res 58:458–469, 2010a, b. https://doi.org/10.1287/opre.1090.0744ec) showed that the problem is binary NP-hard. However, their NP-hardness proof has a flaw. Here, we present a new NP-hardness proof for this problem. Our research shows that the problem is still NP-hard even if the jobs of agent A have a common processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agnetis, A., Mirchandani, P. B., Pacciarelli, D., & Pacifici, A. (2004). Scheduling problems with two competing agents. Operations Research, 52, 229–242.

    Article  Google Scholar 

  • Baker, K. R., & Smith, J. C. (2003). A multiple-criterion model for machine scheduling. Journal of Scheduling, 6, 7–16.

    Article  Google Scholar 

  • Clifford, J. J., & Posner, M. E. (2001). Parallel machine scheduling with high multiplicity. Mathematical Programming, 89, 359–383.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: Freeman.

    Google Scholar 

  • Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–326.

    Article  Google Scholar 

  • Hochbaum, D. S., & Shamir, R. (1991). Strongly polynomial algorithms for the high multiplicity scheduling problem. Operations Research, 39, 648–653.

    Article  Google Scholar 

  • Leung, J. Y. T., Pinedo, M., & Wan, G. H. (2010a). Competitive two-agent scheduling and its applications. Operations Research, 58, 458–469.

    Article  Google Scholar 

  • Leung, J. Y. T., Pinedo, M., & Wan, G. H. (2010b). Electronic Companion—“Competitive two-agent scheduling and its applications”. Operations Research, https://doi.org/10.1287/opre.1090.0744ec.

  • Moore, J. M. (1968). An n job, one machine sequencing algorithm for minimizing the number of late jobs. Management Science, 15, 102–109.

    Article  Google Scholar 

  • Ng, C. T., Cheng, T. C. E., & Yuan, J. J. (2006). A note on the complexity of the problem of two-agent scheduling on a single machine. Journal of Combinatorial Optimization, 12, 387–394.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and one referee for their constructive comments and helpful suggestions. This research was supported by NSFC (11671368) and NSFC (11771406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjiang Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Observation 2.2

Appendix: Proof of Observation 2.2

Proof

The proof of Lemma 1 in Leung et al. (2010b) is based on the assumption that there exists a solution for the given instance of the even–odd partition, that is, there is a partition \((I_1, I_2)\) of the index set \(\{1, 2, \ldots , 2n\}\) with \(|I_1\cap \{2i-1, 2i\}|= 1\) and \(|I_2\cap \{2i-1, 2i\}|= 1\) for each \(i=1, 2, \ldots , n\) such that \(\sum _{j\in I_1} a_j= \sum _{j\in I_2} a_j= H\). From Observation 2.1, the condition \(\sum _{j\in I_1} a_j= \sum _{j\in I_2} a_j= H\) is equivalent to condition (C1). The aim of their Lemma 1 is to show that there is a schedule such that \(\sum C_j^a\le TC\) and \(\sum U_j^b\le n\). This is achieved by constructing a schedule \(\pi \).

To guarantee that their constructed schedule \(\pi \) satisfies \(\sum U_j^b(\pi )\le n\), the R-job must be on time in the schedule. Then we have

$$\begin{aligned}&\mathop \sum \limits _{i:2i-1\in I_1} p_{2i-1}+\mathop \sum \limits _{i:2i\in I_1} p_{2i}+ \mathop \sum \limits _{i=1}^{n} x_{i}+ L\\&\quad = \mathop \sum \limits _{i:2i-1\in I_1}a_{2i-1}+\mathop \sum \limits _{i:2i\in I_1}(a_{2i}+(l_{i}-1)\sigma _i)\\&\qquad + \,\mathop \sum \limits _{i=1}^{n} x_{i}+ L \\&\quad = \mathop \sum \limits _{i=1}^{n}x_{i}+ H+ L+\mathop \sum \limits _{i:2i\in I_1} (l_{i}-1)\sigma _i \\&\quad = \mathop \sum \limits _{i=1}^{n}x_{i}+ H+ L+\mathop \sum \limits _{i:2i\in I_1} l_{i}\sigma _i\\&\qquad -\,\mathop \sum \limits _{i:2i\in I_1}\sigma _i+\mathop \sum \limits _{i:2i-1\in I_1} l_{i}\sigma _i - \mathop \sum \limits _{i:2i-1\in I_1} l_{i}\sigma _i \\&\quad = \mathop \sum \limits _{i=1}^{n} x_{i}+ H+ L+\mathop \sum \limits _{i=1}^{n}l_{i}\sigma _i\\&\qquad -\,\mathop \sum \limits _{i:2i-1\in I_1}l_{i}\sigma _i -\mathop \sum \limits _{i:2i\in I_1}\sigma _i \\&\quad = \mathop \sum \limits _{i=1}^{n} x_{i}+ H+ L+\mathop \sum \limits _{i=1}^{n}l_{i}\sigma _i\\&\qquad -\,\mathop \sum \limits _{i:2i-1\in I_1}l_{i}\sigma _i -\frac{1}{2}\mathop \sum \limits _{i=1}^{n} \sigma _i\\&\quad \le d_{R}= \mathop \sum \limits _{i=1}^{n} x_{i}+ \left[ H+ \frac{1}{2}\mathop \sum \limits _{i=1}^{n} (l_{i}-1)\sigma _i\right] + L. \end{aligned}$$

Thus, we have \(\sum _{i:2i-1\in I_1}l_{i}\sigma _i\ge \frac{1}{2}\sum _{i=1}^{n}l_{i}\sigma _i\).

On the other hand, to guarantee that the total completion time of agent A is no more than TC, we should have

$$\begin{aligned}&\mathop \sum \limits _{i:2i-1\in I_1}(n-i+1)p_{2i-1}+\mathop \sum \limits _{i:2i\in I_1} (n-i)p_{2i}\\&\qquad +\,\mathop \sum \limits _{i=1}^{n}(n-i+1)x_{i}\\&\quad = \mathop \sum \limits _{i:2i-1\in I_1}(n-i+1)a_{2i-1}+\mathop \sum \limits _{i:2i\in I_1}(n-i)(a_{2i}\\&\qquad +\,(l_{i}-1)\sigma _i)+\mathop \sum \limits _{i=1}^{n}(n-i+1)x_{i}\\&\qquad +\,\mathop \sum \limits _{i:2i-1\in I_1}(n-i)(a_{2i}+(l_{i}-1)\sigma _i)\\&\qquad -\,\mathop \sum \limits _{i:2i-1\in I_1} (n-i)(a_{2i}+(l_{i}-1)\sigma _i)\\&\quad = \mathop \sum \limits _{i=1}^{n}(n-i)(a_{2i}+(l_{i}-1)\sigma _i)\\&\qquad +\,\mathop \sum \limits _{i=1}^{n}(n-i+1)x_{i}+\mathop \sum \limits _{i:2i-1\in I_1} a_{2i-1}\\&\qquad -\,\mathop \sum \limits _{i:2i-1\in I_1} (n-i)(a_{2i}- a_{2i-1}+(l_{i}-1)\sigma _i)\\&\quad = \mathop \sum \limits _{i=1}^{n}(n-i)(a_{2i}+(l_{i}-1)\sigma _i)+ \mathop \sum \limits _{i=1}^{n}(n-i+1)x_{i} \\&\qquad +\,\mathop \sum \limits _{i:2i-1\in I_1} (a_{2i-1}-(n-i)l_{i}\sigma _i)\\&\quad = \mathop \sum \limits _{i=1}^{n}(n-i)(a_{2i}+(l_{i}-1)\sigma _i)\\&\qquad + \,\mathop \sum \limits _{i=1}^{n}(n-i+1)x_{i}+\mathop \sum \limits _{i:2i-1\in I_1} l_{i}\sigma _{i}\\&\quad \le TC=\mathop \sum \limits ^{n}_{i=1}(n-i)(a_{2i}+(l_i-1)\sigma _i)\\&\qquad +\mathop \sum \limits ^{n}_{i=1}(n-i+1)x_i+\frac{1}{2}\mathop \sum \limits ^{n}_{i=1}l_i\sigma _i. \end{aligned}$$

Thus, we have \(\sum _{i:2i-1\in I_1}l_{i}\sigma _i\le \frac{1}{2}\sum _{i=1}^{n}l_{i}\sigma _i\).

From the above discussion, we can see that the correctness of their Lemma 1 needs the correctness of condition (C2), i.e., \(\sum _{i:2i-1\in I_1}l_{i}\sigma _i = \sum _{i:2i-1\in I_2}l_{i}\sigma _i= \frac{1}{2}\sum _{i=1}^{n}l_{i}\sigma _i\). Consequently, the correctness of their Lemma 1 requires that

figure c

The proof of Lemma 10 in Leung et al. (2010b) is based on the assumption that there exists a solution for problem \(1||\sum C_j^a\le TC:\sum U_j^b\le n\) on the constructed scheduling instance. The aim is to show that there exists a solution for the instance of the even–odd partition.

Their proof also uses the results in their Lemmas 2–9. We do not need to state all of the steps, but the R-job must be on time, and the total completion time for agent A is no more than TC. Then, from Lemmas 2–9, we have

$$\begin{aligned}&\mathop \sum \limits _{i=1}^{n}p_{2i}+\mathop \sum \limits _{i=1}^{n}x_i+L-\mathop \sum \limits _{i:P_{2i-1} \text{ is } \text{ early }}l_i\sigma _i\\&\quad = \mathop \sum \limits _{i=1}^{n}(a_{2i}+(l_{i}-1)\sigma _i)+ \mathop \sum \limits _{i=1}^{n} x_{i}+ L\\&\qquad -\,\mathop \sum \limits _{i:P_{2i-1} \text{ is } \text{ early }}l_i\sigma _i\\&\quad = H+\frac{1}{2}\mathop \sum \limits _{i=1}^{n}\sigma _i+\mathop \sum \limits _{i=1}^{n}(l_{i}-1)\sigma _i+\mathop \sum \limits _{i=1}^{n}x_{i}+ L\\&\qquad -\,\mathop \sum \limits _{i:P_{2i-1} \text{ is } \text{ early }}l_i\sigma _i\\&\quad = \mathop \sum \limits _{i=1}^{n}x_{i}+ H+ L+\mathop \sum \limits _{i=1}^{n}l_{i}\sigma _i-\frac{1}{2}\mathop \sum \limits _{i=1}^{n}\sigma _i\\&\qquad -\,\mathop \sum \limits _{i:P_{2i-1} \text{ is } \text{ early }}l_i\sigma _i \\&\quad \le d_{R}= \mathop \sum \limits _{i=1}^{n} x_{i}+\left[ H+ \frac{1}{2}\mathop \sum \limits _{i=1}^{n} (l_{i}-1)\sigma _i\right] + L, \end{aligned}$$

and

$$\begin{aligned}&\mathop \sum \limits _{i=1}^{n}(n-i)p_{2i}+\mathop \sum \limits _{i=1}^{n}(n-i+1)x_{i}\\&\qquad +\,\mathop \sum \limits _{i:P_{2i-1} \text{ is } \text{ early }}l_i\sigma _i\\&\quad = \mathop \sum \limits _{i=1}^{n}(n-i)(a_{2i}+(l_{i}-1)\sigma _i)\\&\qquad +\,\mathop \sum \limits _{i=1}^{n}(n-i+1)x_{i} +\mathop \sum \limits _{i:P_{2i-1} \text{ is } \text{ early }}l_i\sigma _i\\&\quad \le TC=\mathop \sum \limits ^{n}_{i=1}(n-i)(a_{2i}+(l_i-1)\sigma _i)\\&\qquad +\,\mathop \sum \limits ^{n}_{i=1}(n-i+1)x_i+\frac{1}{2}\mathop \sum \limits ^{n}_{i=1}l_i\sigma _i. \end{aligned}$$

Hence, we have that

$$\begin{aligned} \sum _{i:P_{2i-1} \text{ is } \text{ early }}l_i\sigma _i\ge \frac{1}{2}\sum _{i=1}^{n}l_{i}\sigma _i \text{ and } \sum _{i:P_{2i-1} \text{ is } \text{ early }}l_i\sigma _i\le \frac{1}{2}\sum _{i=1}^{n}l_{i}\sigma _i. \end{aligned}$$

That is,

figure d

Note that condition (\(\hbox {C2}'\)) is potentially implied in the proof of their Lemma 10. After this, the authors of Leung et al. (2010b) directly conclude that the instance of the even–odd partition has a solution. In the normal deduction, we should add the following procedure.

Let \(I_1= \{2i-1: P_{2i-1} \text{ is } \text{ early }\}\cup \{2i: P_{2i} \text{ is } \text{ early }\}\) and \(I_2= \{1, 2, \ldots , 2n\}\setminus I_1\). The results in their Lemmas 2-9 imply that \(|I_1\cap \{2i-1, 2i\}|= 1\) and \(|I_2\cap \{2i-1, 2i\}|= 1\) for each \(i=1, 2, \ldots , n\). Now condition (\(\hbox {C2}'\)) can be rewritten as condition (C2), i.e., \(\sum _{i:2i-1\in I_1}l_i\sigma _i= \sum _{i:2i-1\in I_2}l_i\sigma _i= \frac{1}{2}\sum _{i=1}^{n}l_{i}\sigma _i\). Thus, from Observation 2.1, the correctness of their Lemma 10 requires that

figure e

From equations (A) and (B), we conclude that if their Lemmas 1 and 10 are correct, then for every partition \((I_1, I_2)\) of the index set \(\{1,2, \ldots , 2n\}\) with \(|I_1\cap \{2i-1, 2i\}|= 1\) and \(|I_2\cap \{2i-1, 2i\}|= 1\) for each \(i=1, 2, \ldots , n\), the two conditions (C1) and (C2) are equivalent. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Yuan, J. & Gao, Y. The complexity of CO-agent scheduling to minimize the total completion time and total number of tardy jobs. J Sched 22, 581–593 (2019). https://doi.org/10.1007/s10951-018-0598-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-018-0598-5

Keywords

Navigation