Skip to main content
Log in

An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

This paper presents the problem of batching and scheduling jobs belonging to incompatible job families on unrelated-parallel machines. More specifically, we investigate cost-efficient approaches for solving batching and scheduling problems concerning the desired lower bounds on batch sizes (\({LB}_{b}\)), which indirectly has a considerable impact on the production cost. Batch scheduling is a more realistic extension of the traditional group scheduling approach, in which the jobs belonging to a job family can be processed as multiple batches. The objective is to minimize the total weighted job completion time and tardiness subject to a machine- and sequence-dependent setup time, dynamic machine availability and job release times, customer segments and job priority, and different machine capability and eligibility criteria for processing. Solving this type of batch scheduling problem is a big challenge due to the high computational complexity incurred by both the sequencing assignment and batching composition. A machine learning random forest classification algorithm is used for the \({LB}_{b}\) determination. Then, an efficient mixed-integer linear programming model (MILP) is developed based on the flow conservation constraints of jobs on machines to reduce the computational complexity. By mapping the MILP model onto a network formulation, an equivalent integer set partitioning type formulation is developed for a branch-and-price optimization algorithm. Computational experiments carried out over different sets of instances, indicate the efficiency and effectiveness of the optimization algorithm, compared to the linear relaxation and relaxed MILP models. Regarding the only available benchmark in the literature, the optimization algorithm yields optimal solutions with affordable computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Lower and upper bounds on batch sizes determine the minimum and maximum number of jobs assigned to batches, respectively, while the capacity on batch sizes restricts the total size of “jobs’ attributes”, like weight or volume.

    \({C}_{\rm max}\): makespan; \({E}_{max}\): maximum earliness; \({T}_{max}\): maximum tardiness; \({L}_{max}\): maximum lateness.

    \({C}_{j}\): job completion time; \({E}_{j}\): job earliness; \({T}_{j}\): job tardiness; \({U}_{j}\): number of tardy jobs; \({w}_{j}\): job weight.

    \({TP}_{h}\): batch processing time; \({TP}_{l}\): batch performing time; \(\# batch\): limitation on the number of developed batches; \(OC\): outsourcing cost.

    POA: Pareto Optimality Algorithm; VNS-GSA: Variable Neighborhood Search—Gravitational Search algorithm; SV-VNS: Society and Civilization—Variable Neighborhood Search algorithm; B&B: Branch-and-Bound algorithm; VNS-NKEA: Variable Neighborhood Search—Neighborhood Knowledge-Based Evolutionary algorithm; BRKGA-DE: Biased Random-Key Genetic—Differential Evolution algorithm; TS: Tabu Search; ABS-TS: Artificial Bee Colony—Tabu Search algorithm; SFLA-VNS: Shuffle Frog Leap—Variable Neighborhood Search algorithm; B&P: Branch-and-Price algorithm; PSO: Particle Swarm Optimization; BA-VNS: Bat Algorithm—Variable Neighborhood Search algorithm; TS/PR: Tabu Search/Path-Relinking; EDA-DE: Estimation Of Distribution Algorithm—Differential Evolution algorithm; JIT: Just In Time.

References

  • Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Prentice-Hall.

    Google Scholar 

  • Arroyo, J. E. C., & Leung, J. Y. T. (2017). Scheduling unrelated parallel batch processing machines with non-identical job sizes and unequal ready times. Computers & Operations Research, 78, 117–128.

    Article  Google Scholar 

  • Allahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187, 985–1032.

    Article  Google Scholar 

  • Aloulou, M. A., Bouzaiene, A., Dridi, N., & Vanderpooten, D. (2014). A bicriteria two-machine flow-shop serial-batching scheduling problem with bounded batch size. Journal of Scheduling, 17, 17–29.

    Article  Google Scholar 

  • Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P. H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46(3), 316–329.

    Article  Google Scholar 

  • Bozorgirad, M. A., & Logendran, R. (2014). Developing tight lower bounds for hybrid flow shop scheduling problems. IIE annual conference proceedings. Montreal: Institute of industrial engineers.

    Google Scholar 

  • Chen, Z. L., & Powell, W. B. (2003). Exact algorithms for scheduling multiple families of jobs on parallel machines. Naval Research Logistics (NRL), 50(7), 823–840.

    Article  Google Scholar 

  • Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations Research, 8(1), 101–111.

    Article  Google Scholar 

  • Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm for the vehicle routing problem with time windows. Operations Research, 40(2), 342–354.

    Article  Google Scholar 

  • Desrosiers, J., Dumas, Y., Solomon, M. M., & Soumis, F. (1995). Time constrained routing and scheduling. Handbooks in Operations Research and Management Science, 8, 35–139.

    Article  Google Scholar 

  • Desrosiers, J., Soumis, F., & Desrochers, M. (1984). Routing with time windows by column generation. Networks, 14(4), 545–565.

    Article  Google Scholar 

  • Dunbar, M., Belieres, S., Shukla, N., Amirghasemi, M., Perez, P., & Mishra, N. (2018). A genetic column generation algorithm for sustainable spare part delivery: Application to the Sydney Drop Point network. Annals of Operations Research. https://doi.org/10.1007/s10479-018-2911-2

    Article  Google Scholar 

  • Farley, A. A. (1990). A note on bounding a class of linear programming problems, including cutting stock problems. Operations Research, 38(5), 922–923.

    Article  Google Scholar 

  • Gelogullari, C. A., & Logendran, R. (2010). Group-scheduling problems in electronics manufacturing. Journal of Scheduling, 13(2), 177–202.

    Article  Google Scholar 

  • Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem. Operations Research, 9(6), 849–859.

    Article  Google Scholar 

  • Gilmore, P. C., & Gomory, R. E. (1963). A linear programming approach to the cutting stock problem-Part II. Operations Research, 11(6), 863–888.

    Article  Google Scholar 

  • Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–326.

    Article  Google Scholar 

  • Guinet, A. (1993). Scheduling sequence-dependent jobs on identical parallel machines to minimize completion time criteria. The International Journal of Production Research, 31(7), 1579–1594.

    Article  Google Scholar 

  • He, C., Lina, H., & Linb, Y. (2015). Bounded serial-batching scheduling for minimizing maximum lateness and makespan. Discrete Optimization, 16, 70–75.

    Article  Google Scholar 

  • Houck, J. D. J., Picard, J. C., Queyranne, M., & Vemuganti, R. R. (1980). The travelling salesman problem as a constrained shortest path problem: Theory and computational experience. Operations Research, 17, 93–109.

    Google Scholar 

  • IBM (2009) ILOG CPLEX Optimization Studio (Version 12.2). IBM.

  • Jahren, E., & Achá, R. A. (2018). A column generation approach and new bounds for the car sequencing problem. Annals of Operations Research, 264, 193–211.

    Article  Google Scholar 

  • Kramer, A., M. Dell'Amico and M. Iori. (2018). Enhanced arc-flow formulations to minimize weighted completion time on identicsl parallel machines, Technical report, DISMI, UNIMORE.

  • Kong, M., Liu, X., Pei, J., Cheng, H., & Pardalos, P. M. (2018). A BRKGA-DE algorithm for parallel-batching scheduling with deterioration and learning effects on parallel machines under preventive maintenance consideration. Annals of Mathematics and Artificial Intelligence, 88, 237–267.

    Article  Google Scholar 

  • Kong, M., Liu, X., Pei, J., Cheng, H., Pardalos, P. M., & Mladenovic, N. (2020). Parallel-batching scheduling with nonlinear processing times on a single and unrelated parallel machines. Journal of Global Optimization, 78, 693–715.

    Article  Google Scholar 

  • Liao, B., Song, Q., & J. Pei, S. Yang and P.M. Pardalos. (2020). Parallel-machine group scheduling with inclusive processing set restrictions, outsourcing option and serial-batching under the effect of step-deterioration. Journal of Global Optimization, 78, 717–742.

    Article  Google Scholar 

  • Liu, S., Pei, J., Cheng, H., Liu, X., & Pardalos, P. M. (2019). Two-stage hybrid flow shop scheduling on parallel batching machines considering a job-dependent deteriorating effect and non-identical job sizes. Applied Soft Computing, 84, 105701.

    Article  Google Scholar 

  • Long, J., Zheng, Z., Gao, X., Pardalos, P. M., & Hu, W. (2020). An effective heuristic based on column generation for the two-dimensional three-stage steel plate cutting problem. Annals of Operations Research, 289, 291–311.

    Article  Google Scholar 

  • Lopes, M. J. P., & de Carvalho, J. V. (2007). A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times. European Journal of Operational Research, 176(3), 1508–1527.

    Article  Google Scholar 

  • Lu, S., Liua, X., Pei, J., Thai, M. T., & Pardalos, P. M. (2018). A hybrid ABC-TS algorithm for the unrelated parallel-batching machines scheduling problem with deteriorating jobs and maintenance activity. Applied Soft Computing, 66, 1268–2182.

    Article  Google Scholar 

  • Lübbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6), 1007–1023.

    Article  Google Scholar 

  • Matin, N. Z. H., Salmasi, N., & Shahvari, O. (2017). Makespan minimization in flowshop batch processing problem with different batch compositions on machines. International Journal of Production Economics, 193, 832–844.

    Article  Google Scholar 

  • Ozturk, O. (2020). A truncated column generation algorithm for the parallel batch scheduling problem to minimize total flow time. European Journal of Operational Research, 286(2), 432–443.

    Article  Google Scholar 

  • Ozturka, O., Begenb, M. A., & Zaric, G. S. (2017). A branch and bound algorithm for scheduling unit size jobs on parallel batching machines to minimize makespan. International Journal of Production Research, 55, 1815–1831.

    Article  Google Scholar 

  • Pei, J., Cheng, B., Liu, X., Pardalos, P. M., & Kong, M. (2019a). Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time. Annals of Operations Research, 272, 217–241.

    Article  Google Scholar 

  • Pei, J., Song, Q., Liao, B., Liu, X., & Pardalos, P. M. (2020a). Parallel-machine serial-batching scheduling with release times under the effects of position-dependent learning and time-dependent deterioration. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03555-2

    Article  Google Scholar 

  • Pei, J., Liu, X., Fan, W., Pardalos, P. M., & Lu, S. (2019b). A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers. Omega, 82, 55–69.

    Article  Google Scholar 

  • Pei, J., Liu, X., Pardalos, P. M., Fan, W., & Yang, S. (2017). Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times. Annals of Operations Research, 249, 175–195.

    Article  Google Scholar 

  • Pei, Z., Zhang, X., Zheng, L., & Wan, M. (2020b). A column generation-based approach for proportionate flexible two-stage no-wait job shop scheduling. International Journal of Production Research, 58(2), 487–508.

    Article  Google Scholar 

  • Rauchecker, G., & Schryen, G. (2019). An exact branch-and-price algorithm for scheduling rescue unites during disaster response. European Journal of Operational Research, 272, 352–363.

    Article  Google Scholar 

  • Rozenknop, A., Wolfler Calvo, R., Alfandari, L., Chemla, D., & Létocart, L. (2013). Solving the electricity production planning problem by a column generation based heuristic. Journal of Scheduling, 16, 585–604.

    Article  Google Scholar 

  • Schaller, J. E., Gupta, J. N., & Vakharia, A. J. (2000). Scheduling a flowline manufacturing cell with sequence dependent family setup times. European Journal of Operational Research, 125(2), 324–339.

    Article  Google Scholar 

  • Shahvari, O., & Logendran, R. (2016). Hybrid flow shop batching and scheduling with a bi-criteria objective. International Journal of Production Economics, 179, 239–258.

    Article  Google Scholar 

  • Shahvari, O., & Logendran, R. (2017a). A bi-objective batch processing problem with dual-resources on unrelated-parallel machines. Applied Soft Computing, 61, 174–192.

    Article  Google Scholar 

  • Shahvari, O., & Logendran, R. (2017b). An Enhanced tabu search algorithm to minimize a bi-criteria objective in batching and scheduling problems on unrelated-parallel machines with desired lower bounds on batch sizes. Computers & Operations Research, 77, 154–176.

    Article  Google Scholar 

  • Shahvari, O., & Logendran, R. (2018). A comparison of two stage-based hybrid algorithms for a batch scheduling problem in hybrid flow shop with learning effect. International Journal of Production Economics, 195, 227–248.

    Article  Google Scholar 

  • Shen, L., Gupta, J. N., & Buscher, U. (2014). Flow shop batching and scheduling with sequence-dependent setup times. Journal of Scheduling, 17(4), 353–370.

    Article  Google Scholar 

  • Van den Akker, J. M., Hoogeveen, J. A., & van Kempen, J. W. (2012). Using column generation to solve parallel machine scheduling problems with minmax objective functions. Journal of Scheduling, 15, 801–810.

    Article  Google Scholar 

  • Van Den Akker, J. M., Hurkens, C. A., & Savelsbergh, M. W. (2000). Time-indexed formulations for machine scheduling problems: Column generation. INFORMS Journal on Computing, 12(2), 111–124.

    Article  Google Scholar 

  • Van Den Akker, J. M., Hoogeveen, J. A., & van de Velde, S. L. (1999). Parallel machine scheduling by column generation. Operations Research, 47(6), 862–872.

    Article  Google Scholar 

  • Vanderbeck, F., & Wolsey, L. A. (1996). An exact algorithm for IP column generation. Operations Research Letters, 19(4), 151–159.

    Article  Google Scholar 

  • Wilhelm, W. E. (2001). A technical review of column generation in integer programming. Optimization and Engineering, 2(2), 159–200.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editors for their insightful comments and suggestions. Dr. Madjid Tavana is grateful for the partial support he received from the Czech Science Foundation (GAˇCR19-13946S) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Tavana.

Ethics declarations

Conflict of interest

The above authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Illustrations for group scheduling and batch scheduling were scaled down to smaller sizes in s. 1.

  • One time unit represents 2.5-time units.

# of groups

\(g=8\)

 

# of jobs of all groups

\(n=25\)

 

# of machines

\(m=5\)

 
 

\(\alpha =60\%\)

 
 

\(\beta =40\%\)

 

# of jobs in group \(i\)

 

Availability time of machine \(h\) (\({a}^{h}\))

\({n}_{1}=3\)

 

\({a}^{1}=0\)

\({n}_{2}=4\)

 

\({a}^{2}=0\)

\({n}_{3}=3\)

 

\({a}^{3}=0\)

\({n}_{4}=3\)

 

\({a}^{4}=2\)

\({n}_{5}=3\)

 

\({a}^{5}=0\)

\({n}_{6}=3\)

  

\({n}_{7}=3\)

  

\({n}_{8}=3\)

  

Jobs of group \({i}\)

Job \({j}\)

Weight of Job \({j}\) (\({{\varvec{w}}}_{{j}}\))

Due date of Job \({j}\) ( \({{\varvec{d}}}_{{j}}\) )

Release time of Job \({j}\) (\({{r}}_{{j}}\))

Processing time of job \({j}\) on machine \({\varvec{h}}\) (\({{\varvec{t}}}_{{j}}^{{\varvec{h}}}\))

\(h=1\)

\(h=2\)

\(h=3\)

\(h=4\)

\(h=5\)

\({i}=1\)

\(j=1\)

4

4

2

1

4

2

2

\(\infty \)

 

\(j=2\)

3

4

3

2

1

3

3

\(\infty \)

 

\(j=3\)

2

5

3

2

\(\infty \)

2

5

\(\infty \)

\({i}=2\)

\(j=4\)

3

11

8

2

3

3

2

4

 

\(j=5\)

3

13

10

2

5

2

\(\infty \)

4

 

\(j=6\)

2

15

15

1

4

1

3

\(\infty \)

 

\(j=7\)

2

15

11

3

\(\infty \)

4

4

\(\infty \)

\({i}=3\)

\(j=8\)

3

7

5

\(\infty \)

1

5

3

\(\infty \)

 

\(j=9\)

4

4

2

\(\infty \)

3

5

4

1

 

\(j=10\)

2

7

5

2

1

3

\(\infty \)

\(\infty \)

\({i}=4\)

\(j=11\)

3

12

8

\(\infty \)

1

4

1

2

 

\(j=12\)

2

13

12

\(\infty \)

1

\(\infty \)

3

\(\infty \)

 

\(j=13\)

2

15

10

2

2

5

3

\(\infty \)

\({i}=5\)

\(j=14\)

3

16

5

\(\infty \)

3

3

\(\infty \)

4

 

\(j=15\)

3

12

8

4

2

3

3

5

 

\(j=16\)

2

19

11

\(\infty \)

\(\infty \)

2

2

\(\infty \)

\({i}=6\)

\(j=17\)

3

8

6

2

4

3

2

2

 

\(j=18\)

2

10

8

\(\infty \)

\(\infty \)

2

1

\(\infty \)

 

\(j=19\)

2

10

8

3

\(\infty \)

1

2

\(\infty \)

\({i}=7\)

\(j=20\)

4

10

3

\(\infty \)

3

2

1

5

 

\(j=21\)

4

12

4

\(\infty \)

3

1

1

\(\infty \)

 

\(j=22\)

1

18

13

4

4

5

4

\(\infty \)

\({i}=8\)

\(j=23\)

2

15

1

2

\(\infty \)

\(\infty \)

2

1

 

\(j=24\)

3

8

3

\(\infty \)

4

\(\infty \)

3

4

 

\(j=25\)

3

10

5

\(\infty \)

4

4

4

5

M|C h: Machine h

M|C 1

Group \({i}^{{\prime}}\)

1

2

3

4

5

6

7

8

Group \(i\)

 0

1

1

3

9

1

1

3

7

 1

0

4

3

4

9

9

4

2

 2

6

0

10

4

4

2

2

8

 3

6

6

0

2

3

6

9

1

 4

9

8

9

0

6

9

4

2

 5

10

7

7

1

0

1

10

3

 6

7

1

9

7

9

0

4

3

 7

7

2

1

5

5

7

0

3

 8

2

1

7

5

3

10

10

0

M|C 2

Group \({i}^{{\prime}}\)

1

2

3

4

5

6

7

8

Group \(i\)

 0

2

1

4

1

5

9

2

1

 1

0

7

4

5

4

2

3

9

 2

9

0

1

4

4

3

7

4

 3

10

2

0

2

5

3

10

9

 4

5

3

6

0

5

5

2

2

 5

2

9

6

8

0

2

1

1

 6

8

3

4

10

1

0

6

9

 7

9

4

7

8

10

7

0

8

 8

2

10

10

3

5

9

2

0

M|C 3

Group \({i}^{{\prime}}\)

1

2

3

4

5

6

7

8

Group \(i\)

        

 0

8

10

2

9

2

5

2

2

 1

0

2

7

4

10

10

6

7

 2

1

0

7

3

3

3

6

3

 3

10

8

0

9

10

4

2

7

 4

5

10

1

0

4

3

8

4

 5

5

9

6

6

0

7

10

4

 6

2

7

9

5

1

0

7

10

 7

7

7

8

2

3

7

0

3

 8

10

8

8

2

10

3

6

0

M|C 4

Group \({i}^{{\prime}}\)

1

2

3

4

5

6

7

8

Group \(i\)

 0

6

1

9

3

8

8

2

8

 1

0

5

7

3

8

8

7

7

 2

1

0

7

6

5

2

3

10

 3

1

7

0

10

6

9

5

8

 4

10

7

7

0

1

9

1

10

 5

9

9

5

1

0

7

8

6

 6

2

3

4

9

6

0

3

9

 7

6

7

9

6

2

2

0

6

 8

4

9

9

2

5

4

3

0

M|C 5

Group \({i}^{{\prime}}\)

1

2

3

4

5

6

7

8

Group \(i\)

 0

\(\infty \)

2

1

7

8

2

3

1

 1

\(\infty \)

\(\infty \)

\(\infty \)

\(\infty \)

\(\infty \)

\(\infty \)

\(\infty \)

\(\infty \)

 2

7

0

1

1

5

8

9

9

 3

10

6

0

10

10

2

1

1

 4

5

5

4

0

9

4

7

5

 5

4

2

6

3

0

10

9

5

 6

4

8

10

6

2

0

2

10

 7

5

2

10

2

1

2

0

2

 8

8

8

4

4

7

7

8

0

\({LB}_{i}^{h}\)

Machine \(h\)

1

2

3

4

5

Group \(i\)

 1

2

1

3

3

2

 2

4

3

4

4

3

 3

3

2

3

2

1

 4

3

3

3

2

3

 5

2

3

3

3

2

 6

2

3

2

3

1

 7

3

3

2

1

3

 8

2

3

3

3

3

Appendix B

Table B-8: CPLEX Comparison for loosely-loaded problems at the three levels of problem complexity.

\(g\)

\(m\)

Low complexity

Medium complexity

High complexity

\(IP\)

\(LP\)

\(RP\)

\(IP\)

\(LP\)

\(RP\)

\(IP\)

\(LP\)

\(RP\)

5

3

1525.59

1450.83

1515.19

1447.38

1339.91

1437.61

2248.29

1999.55

2231.14

 

4

1365.21

1323.12

1354.38

1093.95

1055.18

1078.72

2400.75

2306.31

2370.33

 

5

1431.54

1378.58

1419.48

1776.06

1700.53

1761.67

2582.91

2466.48

2554.67

 

6

1552.32

1518.97

1531.00

925.65

895.97

908.47

1986.93

1925.77

1931.60

6

4

1139.49

1100.24

1126.34

2016.63

1933.93

1992.13

2935.35

2775.26

2893.98

 

5

1584.00

1517.78

1575.82

1584.99

1513.74

1575.36

877.14

840.07

872.02

 

6

718.74

701.27

707.20

2084.94

2021.61

2030.05

1440.45

1398.01

1402.91

7

4

856.35

822.63

843.24

1187.01

1140.74

1153.36

2033.46

1957.36

1956.21

 

5

1106.82

1063.05

1103.67

1813.68

1736.55

1805.97

2585.88

2455.02

2573.23

 

6

1712.70

1687.33

1711.08

1216.71

1189.40

1215.27

3148.20

3062.00

3142.66

8

5

1507.77

1461.82

1478.46

1480.05

1434.49

1444.08

3264.03

3134.43

3156.95

 

6

847.44

802.67

835.84

1446.39

1362.43

1421.01

2845.26

2599.16

2791.83

9

5

693.00

641.65

667.16

1476.09

1373.86

1416.90

2267.10

2072.41

2151.65

 

6

1224.63

1156.93

1184.79

1955.25

1836.47

1892.89

2271.06

2066.87

2177.62

10

6

693.99

661.34

690.62

1342.44

1265.42

1333.38

1411.74

1338.84

1398.21

11

6

1715.67

1640.86

1679.84

1514.70

1433.16

1472.52

2923.47

2762.95

2820.90

Table B-9: CPLEX Comparison for moderately-loaded problems at the three levels of problem complexity.

\(g\)

\(m\)

Low complexity

Medium complexity

High complexity

\(IP\)

\(LP\)

\(RP\)

\(IP\)

\(LP\)

\(RP\)

\(IP\)

\(LP\)

\(RP\)

6

3

1782.99

1723.31

1699.58

2661.12

2504.84

2547.95

1603.80

1495.49

1501.49

7

3

1925.55

1814.14

1797.81

1147.41

1063.38

1076.93

2710.62

2522.03

2469.19

8

3

1534.50

1435.06

1502.14

2522.52

2359.06

2447.60

3075.93

2866.64

2993.71

 

4

1250.37

1179.78

1207.30

1582.02

1473.10

1514.74

3363.03

3052.76

3215.72

9

4

1735.47

1655.29

1717.09

2380.95

2169.41

2353.83

3165.03

2805.09

3112.39

10

4

1131.57

1084.51

1087.43

2293.83

2113.83

2160.28

2323.53

2148.50

2128.73

 

5

1646.37

1598.76

1594.36

1144.44

1079.55

1098.09

3601.62

3340.23

3423.66

11

4

1752.30

1660.57

1644.71

1870.11

1765.97

1760.76

2546.28

2404.48

2375.06

 

5

1526.58

1421.06

1482.30

1258.29

1177.01

1219.05

3257.10

2998.31

3107.78

12

5

1287.99

1171.87

1275.60

1184.04

1083.34

1166.78

1461.24

1292.22

1437.16

 

6

1761.21

1660.21

1732.86

1966.14

1775.03

1906.42

2734.38

2410.12

2628.89

13

5

1738.44

1655.65

1697.39

1872.09

1739.03

1808.02

2736.36

2555.48

2600.57

 

6

1804.77

1651.51

1706.97

2311.65

2063.16

2179.80

3414.51

2930.01

3206.12

14

5

1642.41

1545.61

1540.71

2561.13

2321.52

2357.82

3134.34

2709.15

2858.16

 

6

1504.80

1463.56

1491.11

1347.39

1283.73

1331.47

3353.13

3169.34

3299.26

Table B-10: CPLEX Comparison for tightly-loaded problems at the three levels of problem complexity.

\(g\)

\(m\)

Low complexity

Medium complexity

High complexity

\(IP\)

\(LP\)

\(RP\)

\(IP\)

\(LP\)

\(RP\)

\(IP\)

\(LP\)

\(RP\)

9

3

1818.63

1730.46

1745.93

2398.77

2260.33

2296.76

1970.10

1806.37

1871.24

10

3

1630.53

1577.15

1510.17

2672.01

2581.83

2428.52

3345.21

3233.44

2961.11

11

3

1500.84

1392.86

1397.59

1932.48

1796.17

1810.51

3677.85

3397.67

3329.66

12

3

1493.91

1440.91

1403.88

1930.50

1836.68

1805.40

3584.79

3382.69

3336.23

 

4

1651.32

1513.68

1530.94

1927.53

1640.64

1751.88

3597.66

2901.55

3148.51

13

3

1867.14

1822.90

1845.27

1584.00

1514.50

1563.15

1823.58

1704.36

1788.53

 

4

1500.84

1341.32

1475.06

1954.26

1735.61

1896.38

2138.40

1856.09

2079.50

14

3

1936.44

1709.16

1780.80

1531.53

1271.01

1336.14

2948.22

2396.57

2579.61

 

4

1595.88

1415.13

1572.81

2024.55

1687.35

1967.15

3522.42

2642.39

3412.57

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahvari, O., Logendran, R. & Tavana, M. An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems. J Sched 25, 589–621 (2022). https://doi.org/10.1007/s10951-022-00729-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-022-00729-7

Keywords

Navigation