Skip to main content

Advertisement

Log in

Piecewise Convex Maximization Problems: Piece Adding Technique

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this article, we provide a global search algorithm for maximizing a piecewise convex function F over a compact D. We propose to iteratively refine the function F at local solution y by a virtual cutting function p y (⋅) and to solve max {min {F(x)−F(y),p y (x)}∣xD} instead. We call this function either a patch, when it avoids returning back to the same local solutions, or a pseudo patch, when it possibly yields a better point. It is virtual in the sense that the role of cutting constraints is played by additional convex pieces in the objective function. We report some computational results, that represent an improvement on previous linearization based techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsevendorj, I.: Piecewise-convex maximization problems: global optimality conditions. J. Glob. Optim. 21(1), 1–14 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fortin, D., Tsevendorj, I.: Piecewise-convex maximization problems: algorithm and computational experiments. J. Glob. Optim. 24(1), 61–77 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fortin, D., Tseveendorj, I.: Piecewise-convex maximization approach to multiknapsack. Optimization 58(7), 883–895 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  5. Vasiliev, F.P.: Chislennye Metody Resheniya Ekstremalnykh Zadach, 2nd edn. Nauka, Moscow (1988)

    Google Scholar 

  6. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305. Springer, Berlin (1993)

    Google Scholar 

  7. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 306. Springer, Berlin (1993)

    MATH  Google Scholar 

  8. Pardalos, P.M., Schnitger, G.: Checking local optimality in constrained quadratic programming is NP-hard. Oper. Res. Lett. 7(1), 33–35 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüş, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Nonconvex Optimization and its Applications, vol. 33. Kluwer Academic, Dordrecht (1999)

    MATH  Google Scholar 

  10. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. Lecture Notes in Computer Science, vol. 455. Springer, Berlin (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ider Tseveendorj.

Additional information

Communicated by M. Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortin, D., Tseveendorj, I. Piecewise Convex Maximization Problems: Piece Adding Technique. J Optim Theory Appl 148, 471–487 (2011). https://doi.org/10.1007/s10957-010-9763-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9763-5

Keywords