Skip to main content
Log in

Weak and Strong Subgradients of Set-Valued Maps

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider weak subgradients of a set-valued map and present a new notion of strong subgradient. We study their properties and compare our constructions and results with other developments. We give existence conditions of both types and establish several optimality conditions in terms of set optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borwein, J.M.: A Lagrange multiplier theorem and a sandwich theorem for convex relations. Math. Scand. 48, 189–204 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Yang, X.Q.: A Hahn-Banach theorem in ordered linear spaces and its applications. Optimization 25, 1–9 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, G.Y., Craven, B.D.: A vector variational inequality and optimization over an efficient set. Z. Oper. Res. 34, 1–12 (1990)

    MATH  MathSciNet  Google Scholar 

  4. Chen, G.Y., Jahn, J.: Optimality conditions for set-valued optimization problems. Set-valued optimization. Math. Methods Oper. Res. 48, 187–200 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Li, S.J., Guo, X.L.: Weak subdifferential for set-valued mappings and its applications. Nonlinear Anal. 71, 5781–5789 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baier, J., Jahn, J.: On subdifferentials of set-valued maps. J. Optim. Theory Appl. 100, 233–240 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Song, W.: Weak subdifferential of set-valued mappings. Optimization 52, 263–276 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jahn, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin (2004)

    MATH  Google Scholar 

  9. Bot, R.I., Grad, S.-M., Wanka, G.: Duality in Vector Optimization. Vector Optimization. Springer, Berlin (2009)

    Book  Google Scholar 

  10. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I. Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  11. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. II. Applications. Springer, Berlin (2006)

    Google Scholar 

  12. Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47, 1395–1400 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Alonso, M., Rodríguez-Marín, L.: Set-relations and optimality conditions in set-valued maps. Nonlinear Anal. 63, 1167–1179 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hernández, E., Rodríguez-Marín, L.: Lagrangian duality in set-valued optimization. J. Optim. Theory Appl. 134, 119–134 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jameson, G.: Ordered Linear Spaces. Lecture Notes in Mathematics, vol. 141. Springer, Berlin (1970)

    MATH  Google Scholar 

  16. Peng, J.W., Lee, H.W.J., Rong, W.D.: Yang, X.M: Hahn-Banach theorems and subgradients of set-valued maps. Math. Methods Oper. Res. 61, 281–297 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Mathematics in Science and Engineering, vol. 176. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  18. Bednarczuk, E.M., Song, W.: Contingent epiderivative and its applications to set-valued maps. Control Cybern. 27, 375–386 (1998)

    MATH  MathSciNet  Google Scholar 

  19. Rodríguez-Marín, L., Sama, M.: Epidifferentiability of the map of infima in Hilbert spaces. J. Math. Anal. Appl. 342, 371–385 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Systems and Control: Foundations and Applications, vol. 2. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  21. Jahn, J., Rauh, R.: Contingent epiderivatives and set-valued optimization. Math. Methods Oper. Res. 46, 193–211 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rodríguez-Marín, L., Sama, M.: About contingent epiderivatives. J. Math. Anal. Appl. 327, 745–762 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rodríguez-Marín, L., Sama, M.: Variational characterization of the contingent epiderivative. J. Math. Anal. Appl. 335, 1374–1382 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Hernández.

Additional information

Communicated by X.Q. Yang.

This work for the first author was supported in part by Ministerio de Ciencia e Innovación (Spain) Project MTM2009-09493. The authors thank both referees for their value suggestions and comments to the previous version.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, E., Rodríguez-Marín, L. Weak and Strong Subgradients of Set-Valued Maps. J Optim Theory Appl 149, 352–365 (2011). https://doi.org/10.1007/s10957-010-9787-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9787-x

Keywords