Skip to main content
Log in

A Projection-Proximal Point Algorithm for Solving Generalized Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a projection-proximal point method for solving a class of generalized variational inequalities is considered in Hilbert spaces. We investigate a general iterative algorithm, which consists of an inexact proximal point step followed by a suitable orthogonal projection onto a hyperplane. We prove the convergence of the algorithm for a pseudomonotone mapping with weakly upper semicontinuity and weakly compact and convex values. We also analyze the convergence rate of the iterative sequence under some suitable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burachik, R.S., Scheimberg, S.: A proximal point method for the variational inequality problem in Banach spaces. SIAM J. Control Optim. 39, 1633–1649 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Konnov, I.V.: A combined relaxation method for variational inequalities with nonlinear constraints. Math. Program. 80, 239–252 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yao, J.C.: A proximal method for pseudomonotone type variational-like inequalities. Taiwan. J. Math. 2, 497–514 (2006)

    Google Scholar 

  5. Yao, J.C.: Strong convergence theorems for strictly pseudocontractive mappings of Browder–Petryshyn type. Taiwan. J. Math. 3, 837–850 (2006)

    Google Scholar 

  6. Facchinei, F., Pang, J.S.: Finite Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  7. He, Y.R.: A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 185, 166–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Marcotte, P.: Application of Khobotov’s algorithm to variational inequalities and network equilibrium. Inf. Syst. Oper. Res. 29, 258–270 (1991)

    MATH  Google Scholar 

  9. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Solodov, M.V., Svaiter, B.F.: A unified framework for some inexact proximal point algorithms. Numer. Funct. Anal. Optim. 22, 1013–1035 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Solodov, M.V., Svaiter, B.F.: Error bounds for proximal point subproblems and associated inexact proximal point algorithms. Math. Program. 88, 371–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krasnoselskii, M.A.: Two observations about the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  13. Martinet, B.: Régularisation d’inéquations variationelles par approximations successives. Rev. Fr. Inform. Rech. Oper. 4, 154–158 (1970)

    MathSciNet  Google Scholar 

  14. Moreau, J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  15. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burke, J.V., Qian, M.: A variable metric proximal point algorithm for monotone operators. SIAM J. Control Optim. 37, 353–375 (1998)

    Article  MathSciNet  Google Scholar 

  17. Cominetti, R.: Coupling the proximal point algorithm with approximation methods. J. Optim. Theory Appl. 95, 581–600 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6, 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc. Publications Division, New York (1987)

    Google Scholar 

  20. Ding, X.P., Tan, K.K.: A minimax inequality with application to existence of equilibrium point and fixed point theorems. Colloq. Math. 63, 233–247 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  22. Takahashi, W.: Nonlinear Functional Analysis: Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  23. Solodov, M.V.: Convergence rate analysis of iterative algorithms for solving variational inequality problems. Math. Program. 96, 513–528 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    MATH  Google Scholar 

  25. Nadler, S.B.: Multi-valued contraction mappings. Pac. J. Math. 30, 475–488 (1969)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Jing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, FQ., Huang, NJ. A Projection-Proximal Point Algorithm for Solving Generalized Variational Inequalities. J Optim Theory Appl 150, 98–117 (2011). https://doi.org/10.1007/s10957-011-9825-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9825-3

Keywords

Navigation