Skip to main content
Log in

Coupling the Gradient Method with a General Exterior Penalization Scheme for Convex Minimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze an algorithm that couples the gradient method with a general exterior penalization scheme for constrained or hierarchical minimization of convex functions in Hilbert spaces. We prove that a proper but simple choice of the step sizes and penalization parameters guarantees the convergence of the algorithm to solutions for the optimization problem. We also establish robustness and stability results that account for numerical approximation errors, discuss implementation issues and provide examples in finite and infinite dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H., Czarnecki, M.-O.: Asymptotic behavior of coupled dynamical systems with multiscale aspects. J. Differ. Equ. 248(6), 1315–1344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Czarnecki, M.-O., Peypouquet, J.: Prox-penalization and splitting methods for constrained variational problems. SIAM J. Optim. 21(1), 149–173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auslender, A., Crouzeix, J.-P., Fedit, P.: Penalty-proximal methods in convex programming. J. Optim. Theory Appl. 55(1), 1–21 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez, F., Cominetti, R.: Primal and dual convergence of a proximal point exponential penalty method for linear programming. Math. Program., Ser. A 93(1), 87–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cominetti, R., Courdurier, M.: Coupling general penalty schemes for convex programming with the steepest descent method and the proximal point algorithm. SIAM J. Optim. 13, 745–765 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kiwiel, K.: Exact penalty functions in proximal bundle methods for constrained convex nondifferentiable minimization. Math. Program., Ser. B 52(2), 285–302 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Peypouquet, J.: Asymptotic convergence to the optimal value of diagonal proximal iterations in convex minimization. J. Convex Anal. 16(1), 277–286 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Attouch, H., Czarnecki, M.-O., Peypouquet, J.: Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities. SIAM J. Optim. (in press)

  9. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  10. Rockafellar, R.-T.: Convex Analysis. Princeton University Press, Princeton NJ (1970)

    MATH  Google Scholar 

  11. Combettes, P.-L.: Quasi-Fejérian analysis of some optimization algorithms. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms for Feasibility and Optimization, pp. 115–152. Elsevier, Amsterdam (2001)

    Google Scholar 

  12. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Isr. J. Math. 26(2), 137–150 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Alvarez, F., Peypouquet, J.: Asymptotic almost-equivalence and ergodic convergence of Lipschitz evolution systems in Banach spaces. Nonlinear Anal. 73(9), 3018–3033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brézis, H.: Analyse fonctionnelle: théorie et applications. Dunod, Paris (1999)

    Google Scholar 

  16. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Alternating proximal algorithms for weakly coupled convex minimization problems, Applications to dynamical games and PDEs. J. Convex Anal. 15(3), 485–506 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Attouch, H., Cabot, A., Frankel, P., Peypouquet, J.: Alternating proximal algorithms for constrained variational inequalities. Application to domain decomposition for PDE’s. Nonlinear Anal., Theory, Methods Appl. 74(18), 7455–7473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, M.-H.: Proximal alternating directions method for structured variational inequalities. J. Optim. Theory Appl. 134, 107–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program., Ser. A 64(1), 81–101 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  21. Evans, L.: Partial Differential Equations, 2nd edn. AMS Graduate Studies in Mathematics. AMS, Providence (2002)

    Google Scholar 

  22. Candès, E.-J., Romberg, J.-K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Peypouquet.

Additional information

Communicated by Jean-Pierre Crouzeix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peypouquet, J. Coupling the Gradient Method with a General Exterior Penalization Scheme for Convex Minimization. J Optim Theory Appl 153, 123–138 (2012). https://doi.org/10.1007/s10957-011-9936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9936-x

Keywords

Navigation