Skip to main content
Log in

Nonlinear Perturbations of Polyhedral Normal Cone Mappings and Affine Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper establishes an upper estimate for the Fréchet normal cone to the graph of the nonlinearly perturbed polyhedral normal cone mappings in finite dimensional spaces. Under a positive linear independence assumption on the normal vectors of the active constraints at the point in question, the result leads to an upper estimate for values of the Mordukhovich coderivative of such mappings. On the basis, new results on solution stability of parametric affine variational inequalities under nonlinear perturbations are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Dontchev, A.L., Rockafellar, R.T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 6, 1087–1105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Henrion, R., Mordukhovich, B.S., Nam, N.M.: Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities. SIAM J. Optim. 20, 2199–2227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lu, S., Robinson, S.M.: Variational inequalities over perturbed polyhedral convex sets. Math. Oper. Res. 33, 689–711 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Nam, N.M.: Coderivatives of normal mappings and the Lipschitzian stability of parametric variational inequalities. Nonlinear Anal. 73, 2271–2282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Robinson, S.M.: Solution continuity in monotone affine variational inequalities. SIAM J. Optim. 18, 1046–1060 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Robinson, S.M., Lu, S.: Solution continuity in variational conditions. J. Glob. Optim. 40, 405–415 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yao, J.-C., Yen, N.D.: Coderivative calculation related to a parametric affine variational inequality, Part 1: Basic calculations. Acta Math. Vietnam. 34, 157–172 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Yao, J.-C., Yen, N.D.: Coderivative calculation related to a parametric affine variational inequality, Part 2: Applications. Pacific. J. Optim. 5, 493–506 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory, Vol. II: Applications. Springer, Berlin (2006)

    Google Scholar 

  10. Qui, N.T.: Upper and lower estimates for a Fréchet normal cone. Acta Math. Vietnam. (2011, in press)

  11. Qui, N.T.: Linearly pertubed polyhedral normal cone mappings and applications. Nonlinear Anal. 74, 1676–1689 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Qui, N.T.: New results on linearly pertubed polyhedral normal cone mappings. J. Math. Anal. Appl. 381, 352–364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Robinson, S.M.: Generalized equations and their solutions. I. Basic theory. Point-to-set maps and mathematical programming. Math. Program. Stud. 10, 128–141 (1979)

    Article  MATH  Google Scholar 

  14. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Phung, H.T.: On the locally uniform openness of polyhedral sets. Acta Math. Vietnam. 25, 273–284 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Bartl, D.: A short algebraic proof of the Farkas lemma. SIAM J. Optim. 19, 234–239 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tam, N.N., Yen, N.D.: Continuity properties of the Karush–Kuhn–Tucker point set in quadratic programming problems. Math. Program. 85, 193–206 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, G.M., Yen, N.D.: Fréchet and normal coderivatives of implicit multifunctions. Appl. Anal. 90(6), 1011–1027 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levy, A.B., Mordukhovich, B.S.: Coderivatives in parametric optimization. Math. Program. 99, 311–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, a View from Variational Analysis. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thanh Qui.

Additional information

Communicated by Nguyen Dong Yen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qui, N.T. Nonlinear Perturbations of Polyhedral Normal Cone Mappings and Affine Variational Inequalities. J Optim Theory Appl 153, 98–122 (2012). https://doi.org/10.1007/s10957-011-9937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9937-9

Keywords

Navigation