Abstract
The stochastic nonlinear infinite-dimensional equations of gradient type and with additive Wiener noise can be reduced to an optimal convex control problem via Brezis–Ekeland duality device. This approach is illustrated here on a few classes of nonlinear stochastic parabolic equations which are relevant as diffusion models under stochastic Gaussian perturbations, and image restoring technique.
Similar content being viewed by others
References
Brezis, H., Ekeland, I.: Un principe variationnel associé à certaines équations paraboliques. Le cas indépendent du temps. C. R. Acad. Sci. Paris 282, 971–974 (1976)
Brezis, H., Ekeland, I.: Un principe variationnel associé à certaines équations paraboliques. Le cas indépendent du temps. C. R. Acad. Sci. Paris 282, 1197–1198 (1976)
Ghoussoub, N., Tzou, L.: A variational principle for gradient flows. Math. Ann. 330, 519–549 (2004)
Ghoussoub, N.: Selfdual Partial Differential Systems and Their Variational Principles. Springer, New York (2008)
Marinoschi, G.: Variational approach to time-dependent nonlinear diffusion equations (to appear)
Stefanelli, U.: The Brezis–Ekeland principle for doubly nonlinear equations. SIAM J. Control Optim. 8, 1615–1642 (2008)
Visintin, A.: Extension of the Brezis–Ekeland–Nayroles principle to monotone operators. Adv. Math. Sci. Appl. 18, 633–650 (2008)
Auchmuty, G.: Saddle-points and existence-uniqueness for evolution equations. Differ. Integral Equ. 6, 1167–1171 (1993)
Da Prato, G.: Kolmogorov Equations for Stochastic PDEs. Birkhäuser, Basel (2004)
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)
Barbu, V.: Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, New York (2010)
Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. D. Reidel, Dordrecht (1986). New edition, Springer, New York (2011)
Barbu, V.: A variational approach stochastic nonlinear problems. J. Math. Anal. Appl. 384, 2–15 (2011)
Barbu, V.: Existence for semilinear parabolic stochastic equations. Rend. Lincei Mat. Appl. 21, 297–403 (2010)
Barbu, V., Da Prato, G., Tubaro, L.: The stochastic reflection problem in Hilbert space. Commun. Partial Differ. Equ. (to appear)
Rockafellar, R.T.: Integrals which are convex functional. II. Pac. J. Math. 29, 439–469 (1971)
Rockafellar, R.T.: State constraints in convex control problem of Bolza. SIAM J. Control 10, 691–716 (1972)
Cepa, E.: Problème de Skorohod multivoque. Ann. Probab. 26, 500–532 (1998)
Barbu, V., Da Prato, G.: The generator of the transitive semigroup corresponding to a stochastic variational inequality. Commun. Partial Differ. Equ. 33, 1318–1338 (2008)
Kobayashi, R., Giga, Y.: Equations with singular diffusivity. J. Stat. Phys. 95, 1187–1220 (1999)
Barbu, T., Barbu, V., Biga, V., Coca, D.: A PDE variational approach to image denoising and restoration. Nonlinear Anal., Real World Appl. 10, 1351–1361 (2009)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)
Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon/Oxford University Press, New York (2000)
Barbu, V., Da Prato, G., Röckner, M.: Stochastic nonlinear diffusion equation with singular diffusivity. SIAM J. Math. Anal. 41, 1106–1120 (2009)
Fitzpatrick, S.: Representing monotone operators by convex functions. In: Proceedings of Workshop/Miniconference on Function Analysis and Optimization, pp. 59–65, Centre Math. Anal. Australian Nat. University, Canberra (1988)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barbu, V. Optimal Control Approach to Nonlinear Diffusion Equations Driven by Wiener Noise. J Optim Theory Appl 153, 1–26 (2012). https://doi.org/10.1007/s10957-011-9946-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-011-9946-8