Skip to main content

Advertisement

Log in

Multi-input Optimal Control Problems for Combined Tumor Anti-angiogenic and Radiotherapy Treatments

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A cell-population-based model for tumor growth under anti-angiogenic treatment, with the tumor volume and its variable carrying capacity as variables, is combined with the linear-quadratic model for damage done by radiation ionization. The resulting multi-input system is analyzed as an optimal control problem with the objective of minimizing the tumor volume subject to isoperimetric constraints that limit the overall amounts of anti-angiogenic agents, respectively, the damage done to healthy tissue by radiotherapy. For various model formulations, explicit expressions for singular controls are derived for both the dosage of the anti-angiogenic therapeutic agent and the radiation dose schedule. Their role in the structure of optimal protocols is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman, J.: Antiangiogenesis: new concept for therapy of solid tumors. Ann. Surg., 175, 409–416 (1972)

    Article  Google Scholar 

  2. Kerbel, R.S.: Tumor angiogenesis: past present and near future. Carcinogensis, 21, 505–515 (2000)

    Article  Google Scholar 

  3. Boehm, T., Folkman, J., Browder, T., O’Reilly, M.S.: Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997)

    Article  Google Scholar 

  4. Kerbel, R.S.: A cancer chemotherapy resistant to resistance. Nature 390, 335–336 (1997)

    Article  Google Scholar 

  5. d’Onofrio, A.: Fractal growth of tumors and other cellular populations: linking the mechanistic to the phenomenological modeling and vice versa. Chaos Solitons Fractals 41, 875–880 (2009)

    Article  Google Scholar 

  6. Jain, R.K.: Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)

    Article  Google Scholar 

  7. Jain, R.K., Munn, L.L.: Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents. Princ. Pract. Oncol. 21, 1–7 (2007)

    Google Scholar 

  8. Qian, D., et al.: The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Research, 64 (2004); see also: http://www.hopkinsmedicine.org/Press_releases/2004/09_16_04.html

  9. Eisen, M.: Mathematical Models in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biomathematics, vol. 30. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  10. Swan, G.W.: Role of optimal control in cancer chemotherapy. Math. Biosci. 101, 237–284 (1990)

    Article  MATH  Google Scholar 

  11. Swierniak, A.: Optimal treatment protocols in leukemia—modelling the proliferation cycle. Proc. 12th IMACS World Congress, Paris 4, 170–172 (1988)

    Google Scholar 

  12. de Pillis, L.G., Radunskaya, A.: A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theor. Med. 3, 79–100 (2001)

    Article  MATH  Google Scholar 

  13. Fister, K.R., Panetta, J.C.: Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math. 60, 1059–1072 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ledzewicz, U., Schättler, H.: Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. Optim. Theory Appl. 114, 609–637 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ledzewicz, U., Schättler, H.: Analysis of a cell-cycle specific model for cancer chemotherapy. J. Biol. Syst. 10, 183–206 (2002)

    Article  MATH  Google Scholar 

  16. Ledzewicz, U., Schättler, H.: Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy. Math. Biosci. 206, 320–342 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)

    Google Scholar 

  18. Ergun, A., Camphausen, K., Wein, L.M.: Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull. Math. Biol. 65, 407–424 (2003)

    Article  Google Scholar 

  19. Schättler, H., Ledzewicz, U., Cardwell, B.: Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Math. Biosci. Eng. 8, 355–369 (2011)

    Article  MathSciNet  Google Scholar 

  20. d’Onofrio, A., Gandolfi, A.: The response to antiangiogenic anticancer drugs that inhibit endothelial cell proliferation. Appl. Math. Comput. 181, 1155–1162 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. d’Onofrio, A., Gandolfi, A.: A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. Math. Med. Biol. 26, 63–95 (2009). doi:10.1093/imammb/dqn024

    Article  MATH  Google Scholar 

  22. Ledzewicz, U., Schättler, H.: Anti-angiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Control Optim. 46, 1052–1079 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. d’Onofrio, A., Ledzewicz, U., Maurer, H., Schättler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009). doi:10.1016/j.mbs.2009.08.004

    Article  MathSciNet  MATH  Google Scholar 

  24. Swierniak, A.: Modelling combined angiogenic and chemo-therapy. In: Proc. of the Fourteenth National Conference on Appl. of Math. Biology and Medicine, Leszno, Poland, pp. 127–133 (2008)

    Google Scholar 

  25. Swierniak, A.: Direct and indirect control of cancer populations. Bull. Pol. Acad. Sci., Tech. Sci. 56, 367–378 (2008)

    Google Scholar 

  26. Ledzewicz, U., Schättler, H.: A synthesis of optimal controls for a model of tumor growth under angiogenic inhibitors. In: Proc. 44th IEEE Conf. on Dec. and Contr., Sevilla, Spain, pp. 945–950 (2005)

    Google Scholar 

  27. Ledzewicz, U., Munden, J., Schättler, H.: Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models. Discrete Contin. Dyn. Syst., Ser. B 12, 415–438 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ledzewicz, U., Maurer, H., Schättler, H.: Bang-bang and singular controls in a mathematical model for combined anti-angiogenic and chemotherapy treatments. In: Proc. 48th IEEE Conf. on Dec. and Contr., Shanghai, China, pp. 2280–2285 (2009)

    Google Scholar 

  29. Kellerer, A.M., Rossi, H.H.: The theory of dual radiation action. Curr. Top. Radiat. Res. Q. 8, 85–158 (1972)

    Google Scholar 

  30. Chadwick, K.H., Leenhouts, H.P.: The Molecular Theory of Radiation Biology. Springer, Berlin, (1981)

    Book  Google Scholar 

  31. Thames, H.D., Hendry, J.H.: Fractionation in Radiotherapy. Taylor and Francis, London (1987)

    Google Scholar 

  32. Fowler, J.F.: The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 62, 679–694 (1989)

    Article  Google Scholar 

  33. d’Onofrio, A.: A general framework for modelling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208, 202–235 (2005)

    MathSciNet  Google Scholar 

  34. Norton, L., Simon, R.: Growth curve of an experimental solid tumor following radiotherapy. J. Natl. Cancer Inst. 58, 1735–1741 (1977)

    Google Scholar 

  35. Norton, L.: A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988)

    Google Scholar 

  36. Poleszczuk, J., Bodnar, M., Forys, U.: New approach to modeling of anti-angiogenic treatment on the basis of Hahnfeldt et al. model. Math. Biosci. Eng. 8, 591–903 (2011)

    Article  MathSciNet  Google Scholar 

  37. d’Onofrio, A., Gandolfi, A.: Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191, 159–184 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. d’Onofrio, A.: Rapidly acting antitumoral anti-angiogenic therapies. Phys. Rev. E 76, 031920 (2007)

    Article  Google Scholar 

  39. d’Onofrio, A., Gandolfi, A., Rocca, A.: The dynamics of tumour-vasculature interaction suggests low-dose, time-dense antiangiogenic schedulings. Cell Prolif. 42, 317–329 (2009)

    Article  Google Scholar 

  40. Hanin, L.G., Zaider, M.: Cell-survival probability at large doses: an alternative to the linear-quadratic models. Phys. Med. Biol. 55, 4687–4702 (2010)

    Article  Google Scholar 

  41. Wein, L.M., Cohen, J.E., Wu, J.T.: Dynamic optimization of a linear-quadratic model with incomplete repair and volume-dependent sensitivity and repopulation. Int. J. Radiat. Oncol. Biol. Phys. 47, 1073–1083 (2000)

    Article  Google Scholar 

  42. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. MacMillan, New York (1964)

    MATH  Google Scholar 

  43. Bonnard, B., Chyba, M.: Singular Trajectories and their Role in Control Theory. Mathématiques & Applications, vol. 40. Springer, Paris (2003)

    MATH  Google Scholar 

  44. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences (2007)

  45. Piccoli, B., Sussmann, H.: Regular synthesis and sufficient conditions for optimality. SIAM J. Control Optim. 39, 359–410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Bonnard, B.: On singular extremals in the time minimal control problem in ℝ3. SIAM J. Control Optim. 23, 794–802 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  47. Felgenhauer, U.: On stability of bang-bang type controls. SIAM J. Control Optim. 41, 1843–1867 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Felgenhauer, U.: Lipschitz stability of broken extremals in bang-bang control problems. In: Lirkov, I., et al. (eds.) Large-Scale Scientific Computing, Sozopol 2007. Lecture Notes in Comp. Sci., vol. 4818, pp. 317–325. Springer, Berlin (2008)

    Chapter  Google Scholar 

  49. Maurer, H., Büskens, C., Kim, J.-H., Kaja, Y.: Optimization techniques for the verification of second-order sufficient conditions for bang-bang controls. Optim. Control Appl. Methods 26, 129–156 (2005)

    Article  Google Scholar 

  50. Maurer, H., Osmolovskii, N.: Quadratic sufficient optimality conditions for bang-bang control problems. Control Cybern. 33, 555–584 (2003)

    Google Scholar 

  51. Brenner, D.J., Hall, E.J., Huang, T., Sachs, R.K.: Optimizing the time course of brachytherapy and other accelerated radiotherapeutic protocols. Int. J. Radiat. Oncol. Biol. Phys. 29, 893–901 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ledzewicz.

Additional information

Communicated by Alberto d’Onofrio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledzewicz, U., Schättler, H. Multi-input Optimal Control Problems for Combined Tumor Anti-angiogenic and Radiotherapy Treatments. J Optim Theory Appl 153, 195–224 (2012). https://doi.org/10.1007/s10957-011-9954-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9954-8

Keywords

Mathematics Subject Classification (2000)

Navigation