Abstract
A cell-population-based model for tumor growth under anti-angiogenic treatment, with the tumor volume and its variable carrying capacity as variables, is combined with the linear-quadratic model for damage done by radiation ionization. The resulting multi-input system is analyzed as an optimal control problem with the objective of minimizing the tumor volume subject to isoperimetric constraints that limit the overall amounts of anti-angiogenic agents, respectively, the damage done to healthy tissue by radiotherapy. For various model formulations, explicit expressions for singular controls are derived for both the dosage of the anti-angiogenic therapeutic agent and the radiation dose schedule. Their role in the structure of optimal protocols is discussed.
Similar content being viewed by others
References
Folkman, J.: Antiangiogenesis: new concept for therapy of solid tumors. Ann. Surg., 175, 409–416 (1972)
Kerbel, R.S.: Tumor angiogenesis: past present and near future. Carcinogensis, 21, 505–515 (2000)
Boehm, T., Folkman, J., Browder, T., O’Reilly, M.S.: Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997)
Kerbel, R.S.: A cancer chemotherapy resistant to resistance. Nature 390, 335–336 (1997)
d’Onofrio, A.: Fractal growth of tumors and other cellular populations: linking the mechanistic to the phenomenological modeling and vice versa. Chaos Solitons Fractals 41, 875–880 (2009)
Jain, R.K.: Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)
Jain, R.K., Munn, L.L.: Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents. Princ. Pract. Oncol. 21, 1–7 (2007)
Qian, D., et al.: The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Research, 64 (2004); see also: http://www.hopkinsmedicine.org/Press_releases/2004/09_16_04.html
Eisen, M.: Mathematical Models in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biomathematics, vol. 30. Springer, Berlin (1979)
Swan, G.W.: Role of optimal control in cancer chemotherapy. Math. Biosci. 101, 237–284 (1990)
Swierniak, A.: Optimal treatment protocols in leukemia—modelling the proliferation cycle. Proc. 12th IMACS World Congress, Paris 4, 170–172 (1988)
de Pillis, L.G., Radunskaya, A.: A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theor. Med. 3, 79–100 (2001)
Fister, K.R., Panetta, J.C.: Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math. 60, 1059–1072 (2000)
Ledzewicz, U., Schättler, H.: Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. Optim. Theory Appl. 114, 609–637 (2002)
Ledzewicz, U., Schättler, H.: Analysis of a cell-cycle specific model for cancer chemotherapy. J. Biol. Syst. 10, 183–206 (2002)
Ledzewicz, U., Schättler, H.: Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy. Math. Biosci. 206, 320–342 (2007)
Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)
Ergun, A., Camphausen, K., Wein, L.M.: Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull. Math. Biol. 65, 407–424 (2003)
Schättler, H., Ledzewicz, U., Cardwell, B.: Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Math. Biosci. Eng. 8, 355–369 (2011)
d’Onofrio, A., Gandolfi, A.: The response to antiangiogenic anticancer drugs that inhibit endothelial cell proliferation. Appl. Math. Comput. 181, 1155–1162 (2006)
d’Onofrio, A., Gandolfi, A.: A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. Math. Med. Biol. 26, 63–95 (2009). doi:10.1093/imammb/dqn024
Ledzewicz, U., Schättler, H.: Anti-angiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Control Optim. 46, 1052–1079 (2007)
d’Onofrio, A., Ledzewicz, U., Maurer, H., Schättler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009). doi:10.1016/j.mbs.2009.08.004
Swierniak, A.: Modelling combined angiogenic and chemo-therapy. In: Proc. of the Fourteenth National Conference on Appl. of Math. Biology and Medicine, Leszno, Poland, pp. 127–133 (2008)
Swierniak, A.: Direct and indirect control of cancer populations. Bull. Pol. Acad. Sci., Tech. Sci. 56, 367–378 (2008)
Ledzewicz, U., Schättler, H.: A synthesis of optimal controls for a model of tumor growth under angiogenic inhibitors. In: Proc. 44th IEEE Conf. on Dec. and Contr., Sevilla, Spain, pp. 945–950 (2005)
Ledzewicz, U., Munden, J., Schättler, H.: Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models. Discrete Contin. Dyn. Syst., Ser. B 12, 415–438 (2009)
Ledzewicz, U., Maurer, H., Schättler, H.: Bang-bang and singular controls in a mathematical model for combined anti-angiogenic and chemotherapy treatments. In: Proc. 48th IEEE Conf. on Dec. and Contr., Shanghai, China, pp. 2280–2285 (2009)
Kellerer, A.M., Rossi, H.H.: The theory of dual radiation action. Curr. Top. Radiat. Res. Q. 8, 85–158 (1972)
Chadwick, K.H., Leenhouts, H.P.: The Molecular Theory of Radiation Biology. Springer, Berlin, (1981)
Thames, H.D., Hendry, J.H.: Fractionation in Radiotherapy. Taylor and Francis, London (1987)
Fowler, J.F.: The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 62, 679–694 (1989)
d’Onofrio, A.: A general framework for modelling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208, 202–235 (2005)
Norton, L., Simon, R.: Growth curve of an experimental solid tumor following radiotherapy. J. Natl. Cancer Inst. 58, 1735–1741 (1977)
Norton, L.: A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988)
Poleszczuk, J., Bodnar, M., Forys, U.: New approach to modeling of anti-angiogenic treatment on the basis of Hahnfeldt et al. model. Math. Biosci. Eng. 8, 591–903 (2011)
d’Onofrio, A., Gandolfi, A.: Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191, 159–184 (2004)
d’Onofrio, A.: Rapidly acting antitumoral anti-angiogenic therapies. Phys. Rev. E 76, 031920 (2007)
d’Onofrio, A., Gandolfi, A., Rocca, A.: The dynamics of tumour-vasculature interaction suggests low-dose, time-dense antiangiogenic schedulings. Cell Prolif. 42, 317–329 (2009)
Hanin, L.G., Zaider, M.: Cell-survival probability at large doses: an alternative to the linear-quadratic models. Phys. Med. Biol. 55, 4687–4702 (2010)
Wein, L.M., Cohen, J.E., Wu, J.T.: Dynamic optimization of a linear-quadratic model with incomplete repair and volume-dependent sensitivity and repopulation. Int. J. Radiat. Oncol. Biol. Phys. 47, 1073–1083 (2000)
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. MacMillan, New York (1964)
Bonnard, B., Chyba, M.: Singular Trajectories and their Role in Control Theory. Mathématiques & Applications, vol. 40. Springer, Paris (2003)
Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences (2007)
Piccoli, B., Sussmann, H.: Regular synthesis and sufficient conditions for optimality. SIAM J. Control Optim. 39, 359–410 (2000)
Bonnard, B.: On singular extremals in the time minimal control problem in ℝ3. SIAM J. Control Optim. 23, 794–802 (1985)
Felgenhauer, U.: On stability of bang-bang type controls. SIAM J. Control Optim. 41, 1843–1867 (2003)
Felgenhauer, U.: Lipschitz stability of broken extremals in bang-bang control problems. In: Lirkov, I., et al. (eds.) Large-Scale Scientific Computing, Sozopol 2007. Lecture Notes in Comp. Sci., vol. 4818, pp. 317–325. Springer, Berlin (2008)
Maurer, H., Büskens, C., Kim, J.-H., Kaja, Y.: Optimization techniques for the verification of second-order sufficient conditions for bang-bang controls. Optim. Control Appl. Methods 26, 129–156 (2005)
Maurer, H., Osmolovskii, N.: Quadratic sufficient optimality conditions for bang-bang control problems. Control Cybern. 33, 555–584 (2003)
Brenner, D.J., Hall, E.J., Huang, T., Sachs, R.K.: Optimizing the time course of brachytherapy and other accelerated radiotherapeutic protocols. Int. J. Radiat. Oncol. Biol. Phys. 29, 893–901 (1994)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Alberto d’Onofrio.
Rights and permissions
About this article
Cite this article
Ledzewicz, U., Schättler, H. Multi-input Optimal Control Problems for Combined Tumor Anti-angiogenic and Radiotherapy Treatments. J Optim Theory Appl 153, 195–224 (2012). https://doi.org/10.1007/s10957-011-9954-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-011-9954-8