Abstract
Algorithms for convex programming, based on penalty methods, can be designed to have good primal convergence properties even without uniqueness of optimal solutions. Taking primal convergence for granted, in this paper we investigate the asymptotic behavior of an appropriate dual sequence obtained directly from primal iterates. First, under mild hypotheses, which include the standard Slater condition but neither strict complementarity nor second-order conditions, we show that this dual sequence is bounded and also, each cluster point belongs to the set of Karush–Kuhn–Tucker multipliers. Then we identify a general condition on the behavior of the generated primal objective values that ensures the full convergence of the dual sequence to a specific multiplier. This dual limit depends only on the particular penalty scheme used by the algorithm. Finally, we apply this approach to prove the first general dual convergence result of this kind for penalty-proximal algorithms in a nonlinear setting.
Similar content being viewed by others
References
Alvarez, F.: Absolute minimizer in convex programming by exponential penalty. J. Convex Anal. 7(1), 197–202 (2000)
Champion, T.: Tubularity and asymptotic convergence of penalty trajectories in convex programming. SIAM J. Optim. 13(1), 212–227 (2002)
Cominetti, R., Courdurier, M.: Coupling general penalty schemes for convex programming with the steepest descent and the proximal point algorithm. SIAM J. Optim. 13(3), 745–765 (2003) (electronic)
Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques, 2nd edn. Classics in Applied Mathematics, vol. 4. SIAM, Philadelphia (1990)
Gonzaga, C.G.: Path-following methods for linear programming. SIAM Rev. 34(2), 167–224 (1992)
Auslender, A., Cominetti, R., Haddou, M.: Asymptotic analysis for penalty methods in convex and linear programming. Math. Oper. Res. 22(1), 43–62 (1997)
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)
Alvarez, F., Carrasco, M., Pichard, K.: Convergence of a hybrid projection-proximal point algorithm coupled with approximation methods in convex optimization. Math. Oper. Res. 30(4), 966–984 (2005)
Alvarez, F., Cominetti, R.: Primal and dual convergence of a proximal point exponential penalty method for linear programming. Math. Program., Ser. A 93(1), 87–96 (2002)
Cominetti, R.: Coupling the proximal point algorithm with approximation methods. J. Optim. Theory Appl. 95(3), 581–600 (1997)
Gonzaga, C.G., Castillo, R.A.: A nonlinear programming algorithm based on non-coercive penalty functions. Math. Program., Ser. A 96(1), 87–101 (2003)
Gilbert, J.C., Gonzaga, C.G., Karas, E.: Examples of ill-behaved central paths in convex optimization. Math. Program., Ser. A 103(1), 63–94 (2005)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997). Reprint of the 1970 original, Princeton Paperbacks
Attouch, H.: Viscosity solutions of minimization problems. SIAM J. Optim. 6(3), 769–806 (1996)
Iusem, A.N., Svaiter, B.F., Da Cruz Neto, J.X.: Central paths, generalized proximal point methods, and Cauchy trajectories in Riemannian manifolds. SIAM J. Control Optim. 37(2), 566–588 (1999)
Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer Monographs in Mathematics. Springer, New York (2003)
Auslender, A., Crouzeix, J.P., Fedit, P.: Penalty-proximal methods in convex programming. J. Optim. Theory Appl. 55, 1–21 (1987)
Kaplan, A.: On a convex programming method with internal regularization. Sov. Math. Dokl. 19, 795–799 (1978)
Kaplan, A., Tichatschke, R.: Proximal point methods in view of interior-point strategies. J. Optim. Theory Appl. 98(2), 399–429 (1998)
Konnov, I.V.: Combined relaxation methods for the search for equilibrium points and solutions of related problems. Izv. Vysš. Učebn. Zaved., Mat. 37(2), 46–53 (1993)
Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)
Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4), 323–345 (1999)
Brøndsted, A., Rockafellar, R.T.: On the subdifferentiability of convex functions. Proc. Am. Math. Soc. 16, 605–611 (1965)
Cominetti, R., Dussault, J.-P.: Stable exponential-penalty algorithm with superlinear convergence. J. Optim. Theory Appl. 83(2), 285–309 (1994)
Cominetti, R., Pérez-Cerda, J.M.: Quadratic rate of convergence for a primal-dual exponential penalty algorithm. Optimization 39(1), 13–32, (1997)
Dussault, J.-P.: Numerical stability and efficiency of penalty algorithms. SIAM J. Numer. Anal. 32(1), 296–317 (1995)
Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9(1), 14–32 (1999) (electronic)
Oberlin, C., Wright, S.J.: Active set identification in nonlinear programming. SIAM J. Optim. 17(2), 577–605 (2006) (electronic)
Wright, S.J.: An algorithm for degenerate nonlinear programming with rapid local convergence. SIAM J. Optim. 15(3), 673–696 (2005) (electronic)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jean-Pierre Crouzeix.
Rights and permissions
About this article
Cite this article
Alvarez, F., Carrasco, M. & Champion, T. Dual Convergence for Penalty Algorithms in Convex Programming. J Optim Theory Appl 153, 388–407 (2012). https://doi.org/10.1007/s10957-011-9967-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-011-9967-3