Abstract
In this paper, we introduce the notion of invariant pseudolinearity for nondifferentiable and nonconvex functions by means of Dini directional derivatives. We present some characterizations of invariant pseudolinear functions. Some characterizations of the solution set of a nonconvex and nondifferentiable, but invariant, pseudolinear program are obtained. The results of this paper extend various results for pseudolinear functions, pseudoinvex functions, and η-pseudolinear functions, and also for pseudoinvex programs, pseudolinear programs, and η-pseudolinear programs.
Similar content being viewed by others
References
Chew, K.L., Choo, E.U.: Pseudolinearity and efficiency. Math. Program. 28, 226–239 (1984)
Jeyakumar, V., Mond, B.: On generalised convex mathematical programming. J. Aust. Math. Soc. Ser. B, Appl. Math 34, 43–53 (1992)
Jeyakumar, V., Yang, X.Q.: On characterizing the solution sets of pseudolinear programs. J. Optim. Theory Appl. 87, 747–755 (1995)
Komlósi, S.: First and second order characterizations of pseudolinear functions. Eur. J. Oper. Res. 67, 278–286 (1993)
Rapcsák, T.: On pseudolinear functions. J. Oper. Res. 50, 353–360 (1991)
Martos, B.: Nonlinear Programming; Theory and Methods. North-Holland, Amsterdam (1975)
Schaible, S., Ibaraki, T.: Fractional programming. Eur. J. Oper. Res. 12, 325–338 (1983)
Lalitha, C.S., Mehta, M.: A note on pseudolinearity in terms of bifunctions. Asia-Pac. J. Oper. Res. 24, 1–9 (2007)
Lalitha, C.S., Mehta, M.: Characterization of the solution sets of pseudolinear programs and pseudoaffine variational inequality problems. J. Nonlinear Convex Anal. 8(1), 87–98 (2007)
Al-Homidan, S., Ansari, Q.H., Yao, J.-C.: Nonsmooth invexities, invariant monotonicities and nonsmooth vector variational-like inequalities with applications to vector optimization. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, pp. 183–225. Springer, Berlin (2011)
Ansari, Q.H., Rezaei, M.: Generalized pseudolinearity. Optim. Lett. (2012)
Ansari, Q.H., Schaible, S., Yao, J.C.: η-pseudolinearity. Riv. Mat. Sci. Econ. Soc. 22, 31–39 (1999)
Giorgi, G., Guerraggio, A., Thierfelder, J.: Mathematics of Optimization: Smooth and Nonsmooth Case. Elsevier, Amsterdam (2004)
Diewert, W.E.: Alternative characterizations of six kinds of quasiconcavity in the nondifferentiable case with applications to nonsmooth programming. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 51–95. Academic Press, New York (1981)
Giorgi, G., Komlósi, S.: Dini derivatives in optimization—Part I. Riv. Mat. Sci. Econ. Soc. 15(1), 3–30 (1993)
Giorgi, G., Komlósi, S.: Dini derivatives in optimization—Part II. Riv. Mat. Sci. Econ. Soc. 15(2), 3–24 (1993)
Giorgi, G., Komlósi, S.: Dini derivatives in optimization—Part III. Riv. Mat. Sci. Econ. Soc. 18(1), 47–63 (1995)
Hadjisavvas, N., Komlósi, S., Schaible, S.: Handbook of Generalized Convexity and Generalized Monotonicity. Springer, New York (2005)
Jeyakumar, V., Luc, D.T.: Nonsmooth Vector Functions and Continuous Optimization. Springer, New York (2008)
McShane, E.J.: Integration. Princeton University Press, Princeton (1944)
Kortanek, K.O., Evans, J.P.: Pseudoconcave programming and Lagrange regularity. Oper. Res. 15, 882–892 (1967)
Yang, X.M.: On characterizing the solution sets of pseudoinvex extremum problems. J. Optim. Theory Appl. 140, 537–542 (2009)
Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7, 21–26 (1988)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ansari, Q.H., Rezaei, M. Invariant Pseudolinearity with Applications. J Optim Theory Appl 153, 587–601 (2012). https://doi.org/10.1007/s10957-011-9979-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-011-9979-z