Skip to main content
Log in

Invariant Pseudolinearity with Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce the notion of invariant pseudolinearity for nondifferentiable and nonconvex functions by means of Dini directional derivatives. We present some characterizations of invariant pseudolinear functions. Some characterizations of the solution set of a nonconvex and nondifferentiable, but invariant, pseudolinear program are obtained. The results of this paper extend various results for pseudolinear functions, pseudoinvex functions, and η-pseudolinear functions, and also for pseudoinvex programs, pseudolinear programs, and η-pseudolinear programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chew, K.L., Choo, E.U.: Pseudolinearity and efficiency. Math. Program. 28, 226–239 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jeyakumar, V., Mond, B.: On generalised convex mathematical programming. J. Aust. Math. Soc. Ser. B, Appl. Math 34, 43–53 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jeyakumar, V., Yang, X.Q.: On characterizing the solution sets of pseudolinear programs. J. Optim. Theory Appl. 87, 747–755 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Komlósi, S.: First and second order characterizations of pseudolinear functions. Eur. J. Oper. Res. 67, 278–286 (1993)

    Article  MATH  Google Scholar 

  5. Rapcsák, T.: On pseudolinear functions. J. Oper. Res. 50, 353–360 (1991)

    Article  MATH  Google Scholar 

  6. Martos, B.: Nonlinear Programming; Theory and Methods. North-Holland, Amsterdam (1975)

    MATH  Google Scholar 

  7. Schaible, S., Ibaraki, T.: Fractional programming. Eur. J. Oper. Res. 12, 325–338 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lalitha, C.S., Mehta, M.: A note on pseudolinearity in terms of bifunctions. Asia-Pac. J. Oper. Res. 24, 1–9 (2007)

    Article  MathSciNet  Google Scholar 

  9. Lalitha, C.S., Mehta, M.: Characterization of the solution sets of pseudolinear programs and pseudoaffine variational inequality problems. J. Nonlinear Convex Anal. 8(1), 87–98 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Al-Homidan, S., Ansari, Q.H., Yao, J.-C.: Nonsmooth invexities, invariant monotonicities and nonsmooth vector variational-like inequalities with applications to vector optimization. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, pp. 183–225. Springer, Berlin (2011)

    Google Scholar 

  11. Ansari, Q.H., Rezaei, M.: Generalized pseudolinearity. Optim. Lett. (2012)

  12. Ansari, Q.H., Schaible, S., Yao, J.C.: η-pseudolinearity. Riv. Mat. Sci. Econ. Soc. 22, 31–39 (1999)

    MathSciNet  Google Scholar 

  13. Giorgi, G., Guerraggio, A., Thierfelder, J.: Mathematics of Optimization: Smooth and Nonsmooth Case. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  14. Diewert, W.E.: Alternative characterizations of six kinds of quasiconcavity in the nondifferentiable case with applications to nonsmooth programming. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 51–95. Academic Press, New York (1981)

    Google Scholar 

  15. Giorgi, G., Komlósi, S.: Dini derivatives in optimization—Part I. Riv. Mat. Sci. Econ. Soc. 15(1), 3–30 (1993)

    Google Scholar 

  16. Giorgi, G., Komlósi, S.: Dini derivatives in optimization—Part II. Riv. Mat. Sci. Econ. Soc. 15(2), 3–24 (1993)

    Google Scholar 

  17. Giorgi, G., Komlósi, S.: Dini derivatives in optimization—Part III. Riv. Mat. Sci. Econ. Soc. 18(1), 47–63 (1995)

    MATH  Google Scholar 

  18. Hadjisavvas, N., Komlósi, S., Schaible, S.: Handbook of Generalized Convexity and Generalized Monotonicity. Springer, New York (2005)

    Book  MATH  Google Scholar 

  19. Jeyakumar, V., Luc, D.T.: Nonsmooth Vector Functions and Continuous Optimization. Springer, New York (2008)

    MATH  Google Scholar 

  20. McShane, E.J.: Integration. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  21. Kortanek, K.O., Evans, J.P.: Pseudoconcave programming and Lagrange regularity. Oper. Res. 15, 882–892 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, X.M.: On characterizing the solution sets of pseudoinvex extremum problems. J. Optim. Theory Appl. 140, 537–542 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7, 21–26 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamrul Hasan Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, Q.H., Rezaei, M. Invariant Pseudolinearity with Applications. J Optim Theory Appl 153, 587–601 (2012). https://doi.org/10.1007/s10957-011-9979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9979-z

Keywords

Navigation