Skip to main content
Log in

An Active Set Modified Polak–Ribiére–Polyak Method for Large-Scale Nonlinear Bound Constrained Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose an active set modified Polak–Ribiére–Polyak method for solving large-scale optimization with simple bounds on the variables. The active set is guessed by an identification technique at each iteration and the recently developed modified Polak–Ribiére–Polyak method is used to update the variables with indices outside of the active set. Under appropriate conditions, we show that the proposed method is globally convergent. Numerical experiments are presented using box constrained problems in the CUTEr test problem libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gould, N.I.M., Orban, D., Toint, P.L.: Numerical methods for large-scale nonlinear optimization. Acta Numer. 14, 299–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burdakov, O.P., Martínez, J.M., Pilotta, E.A.: A limited-memory multipoint symmetric secant method for bound constrained optimization. Ann. Oper. Res. 117, 51–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM J. Optim. 17, 526–557 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Goldfarb, D.: Extension of Davidson’s variable metric method to maximization under linear inequality and constraints. SIAM J. Appl. Math. 17, 739–764 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, Y.H., Fletcher, R.: Projected Barzilai–Borwein methods for large-scale box-constrained quadratic programming. Numer. Math. 100, 21–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birgin, E.G., Martínez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Facchinei, F., Júdice, J., Soares, J.: An active set newton algorithm for large-scale nonlinear programs with box Canstranits. SIAM J. Optim. 8, 158–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Facchinei, F., Lucidi, S., Palagi, L.: A truncated newton algorithm for large scale box constrained optimization. SIAM J. Optim. 12, 1100–1125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, C.J., Moré, J.J.: Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9, 1100–1127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moré, J.J., Toraldo, G.: Algorithms for bound constrained quadratic programming problems. Numer. Math. 4, 377–400 (1989)

    Article  Google Scholar 

  11. Ni, Q., Yuan, Y.X.: A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization. Math. Comput. 66, 1509–1520 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xiao, Y.H., Hu, Q.G.: Subspace Barzilai–Borwein gradient method for large-scale bound constrained optimization. Appl. Math. Optim. 58, 275–290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1121–1196 (2000)

    Article  Google Scholar 

  14. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, L., Zhou, W.J., Li, D.H.: A descent modified Polak–Ribiere–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, P.L.: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21, 123–160 (1995)

    Article  MATH  Google Scholar 

  17. Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG-software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  18. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their detailed comments and suggestions that have led to a significant improvement of the paper. We also thank the Professors E.G. Birgin, J.M. Martínez, and M. Raydan for their SPG2 code and Professors W.W.Hager and H. Zhang for their ASA code for numerical comparison. W. Cheng’s research was supported by the NSF of China via grant (11071087, 11101081) and by Foundation for Distinguished Young Talents in Higher Education of Guangdong, China LYM10127. D. Li’s research is supported by the major project of the Ministry of Education of China Grant 309023 and the NSF of China Grant 11071087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanyou Cheng.

Additional information

Communicated by F. Giannessi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W., Li, D. An Active Set Modified Polak–Ribiére–Polyak Method for Large-Scale Nonlinear Bound Constrained Optimization. J Optim Theory Appl 155, 1084–1094 (2012). https://doi.org/10.1007/s10957-012-0091-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0091-9

Keywords

Navigation