Skip to main content
Log in

Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Discretization algorithms for semiinfinite minimax problems replace the original problem, containing an infinite number of functions, by an approximation involving a finite number, and then solve the resulting approximate problem. The approximation gives rise to a discretization error, and suboptimal solution of the approximate problem gives rise to an optimization error. Accounting for both discretization and optimization errors, we determine the rate of convergence of discretization algorithms, as a computing budget tends to infinity. We find that the rate of convergence depends on the class of optimization algorithms used to solve the approximate problem as well as the policy for selecting discretization level and number of optimization iterations. We construct optimal policies that achieve the best possible rate of convergence and find that, under certain circumstances, the better rate is obtained by inexpensive gradient methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Iterates may depend on quantities, such as algorithm parameters and the initial point used. In this paper, we view the specification of such quantities as part of the algorithm and, therefore, do not reference them directly.

References

  1. Rustem, B., Howe, M.: Algorithms for Worst-Case Design and Applications to Risk Management. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  3. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Reemtsen, R., Gorner, S.: Numerical methods for semi-infinite programming: a survey. In: Reemtsen, R., Ruckmann, J.-J. (eds.) Semi-Infinite Programming, pp. 195–275. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  6. Kiwiel, K.C.: Convergence of approximate and incremental subgradient methods for convex optimization. SIAM J. Optim. 14(3), 807–840 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lopez, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180(2), 491–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Qi, L., Ling, C., Tong, X., Zhou, G.: A smoothing projected Newton-type algorithm for semi-infinite programming. Comput. Optim. Appl. 42, 1–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Devolder, O., Glineur, F., Nesterov, Y.: First order methods of smooth convex optimization with inexact oracle. Optim. (Online) (2011)

  10. Polak, E.: Optimization. Algorithms and Consistent Approximations. Springer, New York (1997)

    MATH  Google Scholar 

  11. Zhou, J.L., Tits, A.L.: An SQP algorithm for finely discretized continuous minimax problems and other minimax problems with many objective functions. SIAM J. Optim. 6(2), 461–487 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pee, E.Y., Royset, J.O.: On solving large-scale finite minimax problems using exponential smoothing. J. Optim. Theory Appl. 148(2), 390–421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shapiro, A.: Semi-infinite programming, duality, discretization and optimality conditions. Optimization 58(2), 133–161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Program. 91, 53–69 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Polak, E., He, L.: Rate-preserving discretization strategies for semi-infinite programming and optimal control. SIAM J. Control Optim. 30(3), 548–572 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Polak, E., Mayne, D.Q., Higgins, J.: On the extension of Newton’s method to semi-infinite minimax problems. SIAM J. Control Optim. 30(2), 376–389 (1992)

    Article  MathSciNet  Google Scholar 

  17. Chen, C.H., Fu, M., Shi, L.: Simulation and optimization. In: Tutorials in Operations Research, pp. 247–260. INFORMS, Hanover (2008)

    Google Scholar 

  18. Chia, Y.L., Glynn, P.W.: Optimal convergence rate for random search. In: Proceedings of the 2007 INFORMS Simulation Society Research Workshop (2007). www.informs-sim.org/2007informs-csworkshop/2007workshop.html

    Google Scholar 

  19. He, D., Lee, L.H., Chen, C.-H., Fu, M.C., Wasserkrug, S.: Simulation optimization using the cross-entropy method with optimal computing budget allocation. ACM Trans. Model. Comput. Simul. 20(1), 133–161 (2010)

    Article  Google Scholar 

  20. Pasupathy, R.: On choosing parameters in retrospective-approximation algorithms for stochastic root finding and simulation optimization. Oper. Res. 58, 889–901 (2010)

    Article  MATH  Google Scholar 

  21. Royset, J.O., Szechtman, R.: Optimal budget allocation for sample average approximation (2011). http://faculty.nps.edu/joroyset/docs/RoysetSzechtman.pdf

  22. Lee, S.-H., Glynn, P.W.: Computing the distribution function of a conditional expectation via Monte Carlo: discrete conditioning spaces. ACM Trans. Model. Comput. Simul. 13(3), 238–258 (2003)

    Article  Google Scholar 

  23. Chen, C.H., He, D., Fu, M., Lee, L.H.: Efficient simulation budget allocation for selecting an optimal subset. INFORMS J. Comput. 20(4), 579–595 (2008)

    Article  Google Scholar 

  24. Pee, E.Y.: On algorithms for nonlinear minimax and min-max-min problems and their efficiency. Ph.D. Thesis, Naval Postgraduate School, Monterey, California (2011)

  25. Jung, J.H., O’Leary, D.P., Tits, A.L.: Adaptive constraint reduction for convex quadratic programming. Comput. Optim. Appl. 51(1), 125–157 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Monteiro, R.D.C., Adler, I.: Interior path following primal-dual algorithms. Part II: convex quadratic programming. Math. Program. 44(1), 43–66 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gill, P.E., Hammarling, S.J., Murray, W., Saunders, M.A., Wright, M.H.: User’s guide for LSSOL version 1.0: a Fortran package for constrained linear least-squares and convex quadratic programming. Systems Optimization Laboratory, University of Stanford, Stanford, CA (1986)

  28. Polak, E., Womersley, R.S., Yin, H.X.: An algorithm based on active sets and smoothing for discretized semi-infinite minimax problems. J. Optim. Theory Appl. 138, 311–328 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer Academic, Boston (2004)

    MATH  Google Scholar 

  30. Kort, B.W., Bertsekas, D.P.: A new penalty function algorithm for constrained minimization. In: Proceedings 1972 IEEE Conference Decision and Control, pp. 343–362 (1972)

    Google Scholar 

  31. Li, X.: An entropy-based aggregate method for minimax optimization. Eng. Optim. 18, 277–285 (1992)

    Article  Google Scholar 

  32. Xu, S.: Smoothing method for minimax problems. Comput. Optim. Appl. 20, 267–279 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Polak, E., Royset, J.O., Womersley, R.S.: Algorithms with adaptive smoothing for finite minimax problems. J. Optim. Theory Appl. 119(3), 459–484 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ye, F., Liu, H., Zhou, S., Liu, S.: A smoothing trust-region Newton-CG method for minimax problem. Appl. Math. Comput. 199(2), 581–589 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Polak, E.: Smoothing techniques for the solution of finite and semiinfinite min-max-min problems. In: Pillo, G.D., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

Download references

Acknowledgements

J.O. Royset acknowledges support from AFOSR Young Investigator and Optimization & Discrete Math. Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Royset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royset, J.O., Pee, E.Y. Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems. J Optim Theory Appl 155, 855–882 (2012). https://doi.org/10.1007/s10957-012-0109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0109-3

Keywords

Navigation