Abstract
In this paper, we will use the variational method and limiting approach to solve the minimization problems of the Dirichlet/Neumann eigenvalues of the one-dimensional p-Laplacian when the L 1 norm of integrable potentials is given. Combining with the results for the corresponding maximization problems, we have obtained the explicit results for these eigenvalues.



Similar content being viewed by others
References
Derlet, A., Gossez, J.-P., Takáč, P.: Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight. J. Math. Anal. Appl. 371, 69–79 (2010)
Kao, C.-Y., Lou, Y., Yanagida, E.: Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng. 5, 315–335 (2008)
Lou, Y., Yanagida, E.: Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Jpn. J. Ind. Appl. Math. 23, 275–292 (2006)
Liang, X., Lin, X., Matano, H.: A variational problem associated with the minimal speed of travelling waves for spatially periodic reaction–diffusion equations. Trans. Am. Math. Soc. 362, 5605–5633 (2010)
Liang, X., Yi, Y., Zhao, X.-Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Differ. Equ. 231, 57–77 (2006)
Karaa, S.: Sharp estimates for the eigenvalues of some differential equations. SIAM J. Math. Anal. 29, 1279–1300 (1998)
Krein, M.G.: On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. Transl. Am. Math. Soc. 2 1, 163–187 (1955)
Li, W., Yan, P.: Continuity and continuous differentiability of half-eigenvalues in potentials. Commun. Contemp. Math. 12, 977–996 (2010)
Meng, G., Yan, P., Zhang, M.: Spectrum of one-dimensional p-Laplacian with an indefinite integrable weight. Mediterr. J. Math. 7, 225–248 (2010)
Meng, G., Zhang, M.: Continuity in weak topology: first order linear systems of ODE. Acta Math. Sin. Engl. Ser. 26, 1287–1298 (2010)
Möller, M., Zettl, A.: Differentiable dependence of eigenvalues of operators in Banach spaces. J. Oper. Theory 36, 335–355 (1996)
Pöschel, J., Trubowitz, E.: The Inverse Spectral Theory. Academic Press, New York (1987)
Yan, P., Zhang, M.: Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian. Trans. Am. Math. Soc. 363, 2003–2028 (2011)
Zettl, A.: Sturm-Liouville Theory. Math. Surveys & Monographs, vol. 121. Am. Math. Soc., Providence (2005)
Zhang, M.: Continuity in weak topology: higher order linear systems of ODE. Sci. China Ser. A 51, 1036–1058 (2008)
Wei, Q., Meng, G., Zhang, M.: Extremal values of eigenvalues of Sturm–Liouville operators with potentials in L 1 balls. J. Differ. Equ. 247, 364–400 (2009)
Zhang, M.: Extremal values of smallest eigenvalues of hill’s operators with potentials in L 1 balls. J. Differ. Equ. 246, 4188–4220 (2009)
Zhang, M.: Extremal eigenvalues of measure differential equations with fixed variation. Sci. China Math. 53, 2573–2588 (2010)
Meng, G., Yan, P., Zhang, M.: Maximization of eigenvalues of one-dimensional p-Laplacian with integrable potentials. Commun. Contemp. Math., to appear
Binding, P.L., Dràbek, P.: Sturm–Liouville theory for the p-Laplacian. Studia Sci. Math. Hung. 40, 375–396 (2003)
Zhang, M.: The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials. J. London Math. Soc. (2) 64, 125–143 (2001)
Dunford, N., Schwartz, J.T.: Linear Operators, Part I. Interscience, New York (1958)
Zeidler, E.: Nonlinear Functional Analysis and Its Applications, III, Variational Methods and Optimization. Springer, New York (1985)
Binding, P.A., Rynne, B.P.: The spectrum of the periodic p-Laplacian. J. Differ. Equ. 235, 199–218 (2007)
Binding, P.A., Rynne, B.P.: Variational and non-variational eigenvalues of the p-Laplacian. J. Differ. Equ. 244, 24–39 (2008)
Dràbek, P., Takáč, P.: On variational eigenvalues of the p-Laplacian which are not of Ljusternik–Schnirelmann-type. J. London Math. Soc. (2) 81, 625–649 (2010)
Meng, G.: Continuity of solutions and eigenvalues in measures with weak∗ topology. PhD thesis, Tsinghua University, Beijing (2009)
Mingarelli, A.B.: Volterra–Stieltjes Integral Equations and Generalized Ordinary Differential Expressions. Lect. Notes Math., vol. 989. Springer, Berlin (1983)
Zhang, M.: Certain classes of potentials for p-Laplacian to be non-degenerate. Math. Nachr. 278, 1823–1836 (2005)
Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976)
Zhang, M.: Nonuniform nonresonance of semilinear differential equations. J. Differ. Equ. 166, 33–50 (2000)
Acknowledgements
The second author is supported by the National Natural Science Foundation of China (Grant No. 10901089), and the third author is supported by the Doctoral Fund of Ministry of Education of China (Grant No. 20090002110079) and the 111 Project of China (2007).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Michael Hinze.
Rights and permissions
About this article
Cite this article
Meng, G., Yan, P. & Zhang, M. Minimization of Eigenvalues of One-Dimensional p-Laplacian with Integrable Potentials. J Optim Theory Appl 156, 294–319 (2013). https://doi.org/10.1007/s10957-012-0125-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-012-0125-3