Skip to main content
Log in

A Level-Value Estimation Method and Stochastic Implementation for Global Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new method, namely the level-value estimation method, for finding global minimizer of continuous optimization problem. For this purpose, we define the variance function and the mean deviation function, both depend on a level value of the objective function to be minimized. These functions have some good properties when Newton’s method is used to solve a variance equation resulting by setting the variance function to zero. We prove that the largest root of the variance equation equals the global minimal value of the corresponding optimization problem. We also propose an implementable algorithm of the level-value estimation method where importance sampling is used to calculate integrals of the variance function and the mean deviation function. The main idea of the cross-entropy method is used to update the parameters of sample distribution at each iteration. The implementable level-value estimation method has been verified to satisfy the convergent conditions of the inexact Newton method for solving a single variable nonlinear equation. Thus, convergence is guaranteed. The numerical results indicate that the proposed method is applicable and efficient in solving global optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The three parameters H,V and B are used to give the upper bounds of CΔ, \(\operatorname{Var}(Y_{1})\) in (48) and the absolute value of lower bound of the objective function f over ℝn, respectively.

  2. The scopes of parameters α,β and q are suggested in [23]. In the numerical tests of this paper, we set α=0.8,β=0.80 and q=6.

References

  1. Pardalos, P.M., Romeijna, H., Tuy, H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wang, X., Zhou, G.: A new filled function for unconstrained global optimization. Appl. Comput. Math. 174, 419–429 (2006)

    Article  MATH  Google Scholar 

  3. Chinchuluun, A., Rentsen, E., Pardalos, P.M.: Global minimization algorithms for concave quadratic programming problems. Optimization 24, 627–639 (2005)

    Article  Google Scholar 

  4. Toh, K.: Global optimization by monotonic transformation. Comput. Optim. Appl. 23, 77–99 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhu, W.X.: Dynamic globally concavized filled function method for continuous global optimization. J. Optim. Theory Appl. 139(3), 635–648 (2008)

    Article  MathSciNet  Google Scholar 

  6. Zhu, W.X., Ali, M.: Solving nonlinearly constrained global optimization problem via an auxiliary function method. J. Comput. Appl. Math. 230(2), 491–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pardalos, P.M., eds, R.E.: Handbook of Global Optimization. Volume 2: Heuristic Approaches. Kluwer Academic, New York (2002)

    Google Scholar 

  8. Chelouah, R., Siarry, P.: Tabu search applied to global optimization. Eur. J. Oper. Res. 123, 256–270 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bunnag, D.: Stochastic algorithms for global optimization. Ph.D. Thesis, The University of Alabama (2004)

  10. Wang, T.: Global optimization for constrained nonlinear programming. Ph.D. Thesis, University of Illinois at Urbana-Champaign (2001)

  11. Chew, S., Zheng, Q.: Integral Global Optimization (Theory, Implementation and Applications). Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  12. Tian, W., Wu, D., et al.: Modified integral-level set method for the constrained global optimization. Appl. Math. Mech. 25, 202–210 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, D., Tian, W., et al.: An algorithm of modified integral-level set for solving global optimization. Acta Math. Appl. Sin. 24, 100–110 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Phu, H.X., Hoffmann, A.: Essential supremum and supremum of summable function. Numer. Funct. Anal. Optim. 17, 167–180 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hichert, J.: Methoden zur Bestimmung des wesentlichen Supremums mit anwendung in der globalen Optimierung. Thesis TU Ilmenau, N231 (1999) (also published in Shaker Verlag, Aachen (2000). ISBN 3-8265-8206-3)

  16. Hichert, J., Hoffmann, A., Phu, H.X.: Convergence speed of an integral method for computing the essential supremum. In: Bomze, I.M., Csendes, T., Horst, R., Pardalos, P.M. (eds.) Developments in global Optimization, pp. 153–170. Kluwer Academic, New York (1997)

    Chapter  Google Scholar 

  17. Hichert, J., Hoffmann, A., Phu, H.X., Reinhardt, R.: A primal-dual integral method in global optimization. Discuss. Math., Differ. Incl. Control Optim. 20, 257–278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, D., Yu, W., Tian, W.: A level-value estimation method for solving global optimization. Appl. Math. Mech. 27, 1001–1010 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peng, Z., Wu, D., Tian, W.: A level-value estimation method for solving constrained global optimization. Math. Numer. Sin. 29, 293–304 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Asmussen, S., Kroese, D.P., Rubinstein, R.Y.: Heavy tails, importance sampling and cross-entropy. Stoch. Models 21, 57–76 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ross, S.M.: Simulation, 3rd edn. Posts and Telecom Press, Beijing (2006)

    MATH  Google Scholar 

  22. De Boer, P.T., Kroese, D.P., et al.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134, 19–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kroese, D.P., Porotsky, S., Rubinstein, R.Y.: The cross-entropy method for continuous multi-extremal optimization. Methodol. Comput. Appl. Probab. 8, 383–407 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rubinstein, R.Y.: The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 2, 127–190 (1999)

    Article  Google Scholar 

  25. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  27. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  28. Hu, J., Fu, M., Marcus, S.I.: Model reference adaptive search method for global optimization. Oper. Res. 55, 549–568 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gong, G., Qian, M.: A Course in Applied Stochastic Process and Stochastic Models in Algorithms and Intelligent Computing. Tsinghua University Press, Beijing (2004)

    Google Scholar 

  30. Paditz, L.: On the analytical structure of the constant in the nonuniform version of the essen inequality. Statistics 20(3), 453–464 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  32. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., et al.: Handbook of Test Problems for Local and Global Optimization. Kluwer Academic, New York (1999)

    Google Scholar 

  33. Mishra, S.K.: Some new test functions for global optimization and performance of repulsive particle swarm method. Available at SSRN: http://ssrn.com/abstract=926132

  34. Molga, M., Smutnicki, C.: Test functions for optimization needs. www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

Download references

Acknowledgements

The authors would like to thank Professor A. Hoffmann and Professor C.-S. Lee for their help in improving the quality of the initial manuscript. They are very grateful to Professor Q.-C. Zhao and the anonymous reviewers for their constructive comments which play a crucial role on the final version of this paper. This work was supported by Natural Science Foundation of China (61170308), the Natural Science Foundation of FuJian Province (2011J01008) and FuJian Province Eduction Department (JA11033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Peng.

Additional information

Communicated by Qianchuan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Z., Wu, D. & Zheng, Q. A Level-Value Estimation Method and Stochastic Implementation for Global Optimization. J Optim Theory Appl 156, 493–523 (2013). https://doi.org/10.1007/s10957-012-0151-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0151-1

Keywords

Navigation