Skip to main content
Log in

Optimizing Experimental Design in Genetics

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Researchers in the life sciences (i.e., healthcare and agriculture) commonly use heuristics to process and interpret the vast amount of available DNA sequence data. The application of discrete optimization techniques, such as mixed-integer programming (MIP), remains largely unexplored and has the potential to transform the field. This paper reports on the successful use of MIP to optimize experimental design in a practical genetics application. More generally, our results illustrate the potential benefits of using MIP for subset selection problems in genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ansari-Mahyari, S., Berg, P., Lund, M.: Fine mapping quantitative trait loci under selective phenotyping strategies based on linkage and linkage disequilibrium criteria. J. Anim. Breed. Genet. 126(6), 4430–4454 (2009)

    Article  Google Scholar 

  2. Filho, J.D., Telles, M.P.D.C.: Optimization procedures for establishing reserve networks for biodiversity conservation taking into account population genetic structure. Genet. Mol. Biol. 29(2), 207–214 (2006)

    Article  Google Scholar 

  3. Jin, C., Lan, H., Attie, A., Churchill, G., Bulutuglo, D., Yandell, B.S.: Selective phenotyping for increased efficiency in genetic mapping studies. Genetics 168(4), 2285–2293 (2004)

    Article  Google Scholar 

  4. Wang, J.: Optimal marker-assisted selection to increase the effective size of small populations. Genetics 157(2), 867–874 (2001)

    Google Scholar 

  5. Nemhauser, G., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience, New York (1988)

    MATH  Google Scholar 

  6. Hsu, N., Yeh, W.: Optimum experimental design for parameter identification in groundwater hydrology. Water Resour. Res. 25(5), 1025–1040 (1989)

    Article  Google Scholar 

  7. van der Linden, W., Veldkamp, B., Carlson, J.: Optimizing balanced incomplete block designs for educational assessments. Appl. Psychol. Meas. 28(5), 317–331 (2004)

    Article  MathSciNet  Google Scholar 

  8. Atkinson, A., Donev, A.: Optimum Experimental Designs. Oxford Statistical Science Series, vol. 8. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  9. Sager, S.: Sampling decisions in optimum experimental design in the light of Pontryagin’s maximum principle. Preprint (2012). http://mathopt.unihd.de/PEOPLE/Sager/submitted.php

  10. Cochran, W., Cox, G.: Experimental Designs. Wiley, New York (1957)

    MATH  Google Scholar 

  11. Mead, R.: The Design of Experiments. Cambridge Univ. Press, Cambridge (1990)

    MATH  Google Scholar 

  12. Arambula, I., Hicks, I.: Restricted b-factors in bipartite graphs and t-designs. J. Comb. Des. 14(3), 169–182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harris, C., Hoffman, K., Yarrow, L.: Using integer programming techniques for the solution of an experimental design problem. Ann. Oper. Res. 58(3), 243–260 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Constraint orbital branching. In: Proceedings of the 13th International Conference on Integer Programming and Combinatorial Optimization IPCO08, pp. 225–239 (2008)

    Chapter  Google Scholar 

  15. Viera, H. Jr., Sanchez, S., Kienitz, K., Belderrain, M.: Generating and improving orthogonal designs by using mixed integer programming. Eur. J. Oper. Res. 215(3), 629–638 (2011)

    Article  Google Scholar 

  16. Allen, S., Fathi, Y., Gross, K., Mace, M.: An optimal and near-optimal strategy to selecting individuals for transfer in captive breeding programs. Biol. Conserv. 143(11), 2858–2863 (2010)

    Article  Google Scholar 

  17. Bafna, V., Narayanan, B., Ravi, R.: Nonoverlapping local alignments (weighted independent sets of axis-parallel rectangles). Discrete Appl. Math. 71, 41–53 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Butenko, S., Wilhelm, W.: Clique-detection models in computational biochemistry and genomics. Eur. J. Oper. Res. 173, 1–17 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Greenberg, H., Hart, W., Lancia, G.: Opportunities for combinatorial optimization in computational biology. INFORMS J. Comput. 16(4), 211–231 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gusfield, D., Frid, Y., Brown, D.: Integer programming formulations and computations solving phylogenetic and population genetic problems with missing or genotypic data. In: LNCS, vol. 4598, pp. 51–64. Springer, Berlin (2007)

    Google Scholar 

  21. Buckler, E., Gore, M., Zhu, C., Yu, J.: Status and prospects of association mapping in plants. Plant Gen. 1(1), 5–20 (2009)

    Google Scholar 

  22. Morton, N.: Linkage disequilibrium maps and association mapping. J. Clin. Invest. 115(6), 1425–1430 (2005)

    Article  Google Scholar 

  23. Grapes, L., Dekkers, J., Rothschild, M., Fernando, R.: Comparing linkage disequilibrium-based methods for fine mapping quantitative trait loci. Genetics 166(3), 1561–1570 (2004)

    Article  Google Scholar 

  24. Sen, S., Johannes, F., Broman, K.W.: Selective genotyping and phenotyping strategies in a complex trait context. Genetics 181(1), 1613–1623 (2009)

    Article  Google Scholar 

  25. Sen, S., Satagopan, J.M., Churchill, G.A.: Quantitative trait locus study design from an information perspective. Genetics 170(1), 447–464 (2005)

    Article  Google Scholar 

  26. Xu, H.Q.: Minimum moment aberration for nonregular designs and supersaturated designs. Stat. Sin. 13, 691–708 (2003)

    MATH  Google Scholar 

  27. Cox, D., Reid, N.: The Theory of the Design of Experiments. Chapman & Hall/CRC Press, London/Boca Raton (2000)

    MATH  Google Scholar 

  28. Lynch, M., Walsh, B.: Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland (1998)

    Google Scholar 

  29. Legarra, A., Robert-Granie, C., Croiseau, P., Guillaume, F., Fritz, S.: Improved lasso for genomic selection. Genet. Res. 93(1), 77–87 (2010)

    Article  Google Scholar 

  30. Meuwissen, T., Hayes, B., Goddard, M.: Prediction of total genetic value using genomewide dense marker maps. Genetics 157(4), 1819–1829 (2001)

    Google Scholar 

  31. Seber, G.A.F., Lee, A.J.: Linear Regression Analysis, 2nd edn. Wiley, Hoboken (2003)

    Book  MATH  Google Scholar 

  32. Falconer, D., Mackay, T.: Introduction to Quantitative Genetics. Addison-Wesley Longman, Harlow (1996)

    Google Scholar 

  33. Churchill, G., Doerge, R.: Empirical threshold values for quantitative trait mapping. Genetics 138(3), 963–971 (1994)

    Google Scholar 

  34. Kang, H., et al.: Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42(4), 348–354 (2010)

    Article  Google Scholar 

  35. Greene, W.: Econometric Analysis, vol. 2. Macmillan, London (1993)

    Google Scholar 

  36. Weisberg, S.: Applied Linear Regression. Wiley-Interscience, New York (2005)

    Book  MATH  Google Scholar 

  37. Gupta, S., Perlman, M.: Power of the noncentral F-test: effect of additional variates on Hotelling’s t 2-test. J. Am. Stat. Assoc. 69(345), 174–180 (1974)

    MATH  Google Scholar 

  38. McClosky, B., Ma, X., Tanksley, S.: Quantifying the relative contribution of the heterozygous class to QTL detection power. Stat. Appl. Genet. Mol. Biol. 10(1) (2011)

  39. Farrar, D., Glauber, R.: Multicollinearity in regression analysis: the problem revisited. Rev. Econ. Stat. 49(1), 92–107 (1967)

    Article  Google Scholar 

  40. Welch, B.: The generalization of “student’s” problem when several different population variances are involved. Biometrika 34(1–2), 28–35 (1947)

    MathSciNet  MATH  Google Scholar 

  41. Strawderman, R.: Personal communication (2011)

Download references

Acknowledgements

We thank Jason LaCombe for helping edit this manuscript. We thank Prof. Robert Strawderman for advice on model misspecification, which resulted in the proof of Proposition 3.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. McClosky.

Additional information

Communicated by Alberto D’Onofrio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClosky, B., Tanksley, S.D. Optimizing Experimental Design in Genetics. J Optim Theory Appl 157, 520–532 (2013). https://doi.org/10.1007/s10957-012-0172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0172-9

Keywords

Navigation