Skip to main content
Log in

The Design of Laminates as a Global Optimization Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The problem of formulating the design of laminated composite plates as a global optimization problem is discussed. In the paper, a general procedure, based upon the polar formalism for the use of tensor invariants as design variables is presented, along with a wide discussion of its peculiarities and of some numerical issues. An outlook about some open problems is also given, with a perspective on possible future issues and further developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abrate, S.: Optimal design of laminated plates and shells. Compos. Struct. 29, 269–286 (1994)

    Article  Google Scholar 

  2. Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials part 1: Constant stiffness design. Compos. Struct. 90, 1–11 (2009)

    Article  Google Scholar 

  3. Ghiasi, H., Fayazbakhsh, D., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials part 2: Variable stiffness design. Compos. Struct. 93, 1–13 (2010)

    Article  Google Scholar 

  4. Jones, R.M.: Mechanics of Composite Materials, 2nd edn. Taylor and Francis, Philadelphia (1999)

    Google Scholar 

  5. Gurtin, M.E.: an Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  6. Villaggio, P.: Mathematical Models for Elastic Structures. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  7. Vannucci, P.: On bending-tension coupling of laminates. J. Elast. 64, 13–28 (2001)

    Article  MATH  Google Scholar 

  8. Banichuk, N.V.: Problems and Methods of Optimal Structural Design. Plenum Press, New York (1983)

    Book  Google Scholar 

  9. Pedersen, P.: On optimal orientation of orthotropic materials. Struct. Multidiscip. Optim. 1, 101–106 (1989)

    Article  Google Scholar 

  10. Sacchi Landriani, G., Rovati, M.: Optimal design of two-dimensional structures made of composite materials. J. Mech. Des. 113, 88–92 (1991)

    Google Scholar 

  11. Vincenti, A., Desmorat, B.: Optimal orthotropy for minimum elastic energy by the polar method. J. Elast. 102, 55–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Verchery, G.: Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In: Proc. of Colloque Euromech, VIllard-de-Lans, France, vol. 115 (1979)

    Google Scholar 

  13. Vannucci, P.: Plane anisotropy by the polar method. Meccanica 40, 437–454 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vannucci, P.: Influence of invariant material parameters on the flexural optimal design of thin anisotropic laminates. Int. J. Mech. Sci. 51, 192–203 (2009)

    Article  Google Scholar 

  15. Vannucci, P.: A special planar orthotropic material. J. Elast. 67, 81–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vannucci, P.: On special orthotropy of paper. J. Elast. 99, 75–83 (2012)

    Article  MathSciNet  Google Scholar 

  17. Vannucci, P.: Designing the elastic properties of laminates as an optimisation problem: a unified approach based on polar tensor invariants. Struct. Multidiscip. Optim. 31, 378–387 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vincenti, A., Vannucci, P.: Optimal design of smart composite laminates by the polar method and the genetic algorithm BIANCA. In: Mota Soares, C.A. et al. (eds.) Proc. of III European Conference on Computational Mechanics—Solids, Structures and Coupled Problems in Engineering, Lisbon (2006)

    Google Scholar 

  19. Vannucci, P., Vincenti, A.: The design of laminates with given thermal/hygral expansion coefficients: a general approach based upon the polar-genetic method. Compos. Struct. 79, 454–466 (2007)

    Article  Google Scholar 

  20. Grédiac, M.: A procedure for designing laminated plates with required stiffness properties. Application to thin quasi-isotropic quasi-homogeneous uncoupled laminates. J. Compos. Mater. 33, 1939–1956 (1999)

    Article  Google Scholar 

  21. Vincenti, A., Ahmadian, M.R., Vannucci, P.: BIANCA: a genetic algorithm to solve hard combinatorial optimisation problems in engineering. J. Glob. Optim. 48, 399–421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vannucci, P.: ALE-PSO: an adaptive swarm algorithm to solve design problems of laminates. Algorithms 2, 710–734 (2009)

    Article  MathSciNet  Google Scholar 

  23. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85, 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiang, M., Luo, Y.P., Yang, S.Y.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102, 8–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Le Riche, R., Haftka, R.T.: Optimization of laminate stacking sequence for buckling load maximization by genetic algorithms. AIAA J. 31, 951–956 (1993)

    Article  MATH  Google Scholar 

  26. Nagendra, S., Jestin, D., Gürdal, Z., Hatfka, R.T., Watson, L.T.: Improved genetic algorithm for the design of stiffened composite panels. Comput. Struct. 58, 543–555 (1996)

    Article  MATH  Google Scholar 

  27. Kogiso, N., Watson, L.T., Gurdal, Z., Haftka, R.T.: Genetic algorithms with local improvement for composite laminate design. Struct. Optim. 7, 207–218 (1994)

    Article  Google Scholar 

  28. Gürdal, Z., Haftka, R.T., Hajela, P.: Design and Optimization of Laminated Composite Materials. Wiley, New York (1999)

    Google Scholar 

  29. Soremekun, G., Gurdal, Z., Haftka, R.T., Watson, L.T.: Composite laminate design optimization by genetic algorithm with generalized elitist selection. Comput. Struct. 79, 131–143 (2001)

    Article  Google Scholar 

  30. Gantovnik, V.B., Gurdal, Z., Watson, L.T.: A genetic algorithm with memory for optimal design of laminated sandwich composite panels. Compos. Struct. 58, 513–520 (2002)

    Article  Google Scholar 

  31. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191, 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Montemurro, M., Vincenti, A., Vannucci, P.: The automatic dynamic penalization method (ADP) for handling constraints with genetic algorithms. Comput. Methods Appl. Mech. Eng. (2012, submitted). Preprint in HAL Archives Ouvertes. hal-00721271. http://hal.archives-ouvertes.fr/docs/00/72/12/71/PDF/ADP.pdf

  33. Irisarri, F.-X., Bassir, D.H., Carrere, N., Maire, J.-F.: Multiobjective stacking sequence optimization for laminated composite structures. Compos. Sci. Technol. 69, 983–990 (2009)

    Article  Google Scholar 

  34. Sebaey, T.A., Lopes, C.S., Blanco, N., Costa, J.: Ant colony optimization for dispersed laminated composite panels under biaxial loading. Compos. Struct. 94, 31–36 (2011)

    Article  Google Scholar 

  35. Vincenti, A., Vannucci, P., Ahmadian, M.R.: Optimization of laminated composites by using genetic algorithm and the polar description of plane anisotropy. Mech. Adv. Mat. Struct. (doi:10.1080/15376494.2011.563415) (2012, in press). Preprint in HAL Archives Ouvertes. hal-00718807. http://hal.archives-ouvertes.fr/docs/00/71/88/07/PDF/Article.pdf

    Google Scholar 

  36. Tsai, S.W., Hahn, T.: Introduction to Composite Materials. Technomic Publishing, Lancaster (1980)

    Google Scholar 

  37. Montemurro, M., Vincenti, A., Vannucci, P.: Design of elastic properties of laminates with minimum number of plies. Mech. Compos. Mater. 48, 369–390 (2012)

    Article  Google Scholar 

  38. Miki, M.: Material design of composite laminates with required in-plane elastic properties. In: Proc. of ICCM 4 (Fourth International Conference on Composite Materials), Tokio, pp. 1725–1731 (1982)

    Google Scholar 

  39. Vannucci, P.: A note on the geometric and elastic bounds for composite laminates. J. Elast. (2012, in press). Preprint in HAL archives ouvertes, hal-00666598. http://hal.archives-ouvertes.fr/docs/00/66/65/98/PDF/article.pdf

  40. Jibawy, A., Julien, C., Desmorat, B., Vincenti, A., Léné, F.: Hierarchical structural optimization of laminated plates using polar representation. Int. J. Solids Struct. 48, 2576–2584 (2011)

    Article  Google Scholar 

  41. Vannucci, P.: A new general approach for optimizing the performances of smart laminates. Mech. Adv. Mat. Struct. 18, 558–568 (2011)

    Article  Google Scholar 

  42. Vannucci, P., Verchery, G.: Anisotropy of plane complex elastic bodies. Int. J. Solids Struct. 47, 1154–1166 (2010)

    Article  MATH  Google Scholar 

  43. Cross, R.J., Haynes, R.A., Armanios, E.A.: Families of hygrothermally stable asymmetric laminated composites. J. Compos. Mater. 42, 697–716 (2008)

    Article  Google Scholar 

  44. Vannucci, P.: General theory of coupled thermally stable anisotropic laminates. J. Elast. (2012, submitted). Preprint in HAL archives ouvertes, hal-00718543. http://hal.archives-ouvertes.fr/docs/00/71/85/43/PDF/article.pdf

  45. Montemurro, M., Vincenti, A., Vannucci, P.: A two-level procedure for the global optimum design of composite modular structures—application to the design of an aircraft wing. Part 1: Theoretical formulation. J. Optim. Theory Appl. 155, 1–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Montemurro, M., Vincenti, A., Vannucci, P.: A two-level procedure for the global optimum design of composite modular structures—application to the design of an aircraft wing. Part 2: Numerical aspects and examples. J. Optim. Theory Appl. 155, 24–53 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vannucci, P., Verchery, G.: Stiffness design of laminates using the polar method. Int. J. Solids Struct. 38, 9281–9294 (2001)

    Article  MATH  Google Scholar 

  48. Catapano, A., Desmorat, B., Vannucci, P.: Invariant formulation of phenomenological failure criteria for orthotropic sheets and optimization of their strength. Math. Methods Appl. Sci., doi:10.1002/mma.2530 (2012, in press)

  49. Diaconu, C.G., Sato, M., Sekine, H.: Feasible region in general design space of lamination parameters for laminated composites. AIAA J. 40, 559–565 (2002)

    Article  Google Scholar 

  50. Liu, S., Hou, Y., Sun, X., Zhang, Y.: A two-step optimization scheme for maximum stiffness design of laminated plates based on lamination parameters. Compos. Struct. 94, 3529–3537 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Vannucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vannucci, P. The Design of Laminates as a Global Optimization Problem. J Optim Theory Appl 157, 299–323 (2013). https://doi.org/10.1007/s10957-012-0175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0175-6

Keywords

Navigation