Abstract
We examine the decrease of a strictly convex quadratic function along the projected-gradient path and show that our earlier estimates obtained for the bound constraints are valid for more general feasible sets including those defined by separable spherical constraints. The result is useful for the development of in a sense optimal algorithms for the solution of some QPQC problems with separable constraints and is an important ingredient in the development of scalable algorithms for contact problems with friction.


Similar content being viewed by others
References
Bouchala, J., Dostál, Z., Sadowská, M.: Scalable Total BETI based algorithm for 3D coercive contact problems of linear elastostatics. Computing 85(3), 189–217 (2009)
Dostál, Z.: Optimal Quadratic Programming Algorithms, with Applications to Variational Inequalities, 1st edn. SOIA, vol. 23. Springer, New York (2009)
Dostál, Z., Kozubek, T., Vondrák, V., Brzobohatý, T., Markopoulos, A., Horyl, P.: Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Int. J. Numer. Methods Eng. 82(11), 1384–1405 (2010). doi:10.1002/nme.2807
Saad, Y.: Iterative Methods for Large Linear Systems. SIAM, Philadelphia (2002)
Bertsekas, D.P.: Nonlinear Optimization. Athena Scientific, Belmont (1999)
Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)
Friedlander, A., Martínez, J.M., Raydan, M.: A new method for large scale box constrained quadratic minimization problems. Optim. Methods Softw. 5, 57–74 (1995)
Dostál, Z.: Box constrained quadratic programming with proportioning and projections. SIAM J. Optim. 7(3), 871–887 (1997)
Hintermüller, M., Ito, K., Kunisch, K.: The primal–dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2002)
Sorensen, D.C.: Minimization of a large scale quadratic function subject to spherical constraints. SIAM J. Optim. 7(1), 141–161 (1997)
Luo, Z.-Q., Tseng, P.: On the linear convergence of descent methods for convex essentially smooth minimization. SIAM J. Control Optim. 30(2), 408–425 (1992)
Luo, Z.-Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general approach. Ann. Oper. Res. 46, 157–178 (1993)
Schöberl, J.: Solving the Signorini problem on the basis of domain decomposition techniques. Computing 60(4), 323–344 (1998)
Dostál, Z., Schöberl, J.: Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination. Comput. Optim. Appl. 30(1), 23–44 (2005)
Dostál, Z.: On the decrease of a quadratic function along the projected–gradient path. Electron. Trans. Numer. Anal. 31, 25–59 (2008)
Dostál, Z., Domorádová, M., Sadowská, M.: Superrelaxation in minimizing quadratic functions subject to bound constraints. Comput. Optim. Appl. 48(1), 23–44 (2011). doi:10.1007/s10589-009-9237-6
Dostál, Z., Kozubek, T., Markopoulos, A., Brzobohatý, T., Vondrák, V., Horyl, P.: Theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction. Comput. Methods Appl. Mech. Eng. 205–208, 110–120 (2012)
Haslinger, J., Kučera, R., Dostál, Z.: An algorithm for the numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math. 164–165, 387–408 (2004)
Acknowledgements
This research has been supported by the Ministry of Education of the Czech Republic No. MSM6198910027 and by the IT4Innovations Center of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 within Operational Programme ‘Research and Development for Innovations’ funded by Structural Funds of the European Union and the budget of the Czech Republic.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bouchala, J., Dostál, Z. & Vodstrčil, P. Separable Spherical Constraints and the Decrease of a Quadratic Function in the Gradient Projection Step. J Optim Theory Appl 157, 132–140 (2013). https://doi.org/10.1007/s10957-012-0178-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-012-0178-3