Skip to main content
Log in

Long-Short Portfolio Optimization Under Cardinality Constraints by Difference of Convex Functions Algorithm

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the matter of Portfolio selection, we consider an extended version of the Mean-Absolute Deviation (MAD) model, which includes discrete asset choice constraints (threshold and cardinality constraints) and one is allowed to sell assets short if it leads to a better risk-return tradeoff. Cardinality constraints limit the number of assets in the optimal portfolio and threshold constraints limit the amount of capital to be invested in (or sold short from) each asset and prevent very small investments in (or short selling from) any asset. The problem is formulated as a mixed 0–1 programming problem, which is known to be NP-hard. Attempting to use DC (Difference of Convex functions) programming and DCA (DC Algorithms), an efficient approach in non-convex programming framework, we reformulate the problem in terms of a DC program, and investigate a DCA scheme to solve it. Some computational results carried out on benchmark data sets show that DCA has a better performance in comparison to the standard solver IBM CPLEX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Markowitz, H.M.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  2. Markowitz, H.M.: Portfolio Selection. Wiley, New York (1959)

    Google Scholar 

  3. Bartholomew-Biggs, M.: Nonlinear Optimization with Financial Applications. Kluwer Academic, Norwell (2005)

    MATH  Google Scholar 

  4. Elton, E.J., Grubner, M.J., Brown, S.J., Goetzmann, W.N.: Modern Portfolio Theory and Investment Analysis. Wiley, New York (2003)

    Google Scholar 

  5. Fernandez, A., Gomez, S.: Portfolio selection using neural networks. Comput. Oper. Res. 34, 1177–1191 (2007)

    Article  MATH  Google Scholar 

  6. Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag. Sci. 37, 519–531 (1991)

    Article  Google Scholar 

  7. Ogryczak, W., Ruszczynski, A.: From stochastic dominance to mean-risk model: semi-deviations as risk measures. Eur. J. Oper. Res. 116, 33–50 (1999)

    Article  MATH  Google Scholar 

  8. Ogryczak, W., Ruszczynski, A.: On consistency of stochastic dominance and mean-semi deviation models. Math. Program. 89, 217–232 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimization. Comput. Oper. Res. 27, 1271–1302 (2000)

    Article  MATH  Google Scholar 

  10. Jobst, N., Horniman, M., Lucas, C., Mitra, G.: Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quant. Finance 1, 1–13 (2001)

    Article  MathSciNet  Google Scholar 

  11. Le Thi, H.A., Moeini, M., Pham Dinh, T.: Portfolio selection under downside risk measures and cardinality constraints based on DC programming and DCA. Comput. Manag. Sci. 6(4), 477–501 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Konno, H., Akishino, K., Yamamoto, R.: Optimization of a long-short portfolio under nonconvex transaction cost. Comput. Optim. Appl. 32, 115–132 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Konno, H., Koshizuka, T., Yamamoto, R.: Mean-variance portfolio optimization problems under short sale opportunity. Dyn. Contin. Discrete Impuls. Syst., 12(4), 483–498 (2005)

    MATH  MathSciNet  Google Scholar 

  14. DC Programming and DCA: http://lita.sciences.univ-metz.fr/~lethi

  15. Konno, H., Wijayanayake, A.: Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Math. Program., Ser. B 89, 233–250 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Konno, H., Wijayanayake, A.: Portfolio optimization under DC transaction costs and minimal transaction unit constraints. J. Glob. Optim. 22, 137–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Konno, H., Yamamoto, R.: Global optimization versus integer programming in portfolio optimization under nonconvex transaction costs. J. Glob. Optim. 32, 207–219 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Konno, H., Yamamoto, R.: Integer programming approaches in mean-risk models. Comput. Manag. Sci. 2, 339–351 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Konno, H.: Applications of global optimization to portfolio analysis. In: Audet, C., Hansen, P., Savard, G. (eds.) Essays and Surveys in Global Optimization, 1st edn., pp. 195–210. Springer, Berlin (2005)

    Chapter  Google Scholar 

  20. Le Thi, H.A., Moeini, M., Pham Dinh, T.: DC programming approach for portfolio optimization under step increasing transaction costs. Optimization 58(3), 267–289 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Le Thi, H.A., Pham Dinh, T., Muu, L.D.: Exact penalty in DC programming. Vietnam J. Math. 27, 169–178 (1999)

    MATH  MathSciNet  Google Scholar 

  22. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  23. Le Thi, H.A., Pham Dinh, T.: A continuous approach for globally solving linearly constrained quadratic zero-one programming problems. Optimization 50(1–2), 93–120 (2001)

    MATH  MathSciNet  Google Scholar 

  24. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world non convex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pham Dinh, T., Le Thi, H.A.: In: Convex Analysis Approach to D.C. Programming: Theory, Algorithms and Applications, Acta Mathematica Vietnamica, Dedicated to Professor Hoang Tuy on the Occasion of his 70th Birthday, vol. 22, pp. 289–355 (1997)

    Google Scholar 

  26. Le Thi, H.A.: Contribution à l’optimisation non convexe et l’optimisation globale: théorie, algorithmes et applications. Habilitation à Diriger des, Recherches, Université de Rouen (1997)

  27. Pham Dinh, T., Le Thi, H.A.: DC optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 8, 476–505 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Canakgoz, N.A., Beasley, J.E.: Mixed-integer programming approaches for index tracking and enhanced indexation. Eur. J. Oper. Res. 196, 384–399 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai An Le Thi.

Appendix: DCA for Solving (44) When the Transaction Cost Functions Are Concave

Appendix: DCA for Solving (44) When the Transaction Cost Functions Are Concave

Suppose that the functions c(⋅) and d(⋅) are concave and the DC representation of the problem (44) is as follows:

$$ \min \bigl\{ g\bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime} \bigr)-h\bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime}\bigr) : \bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime}\bigr)\in \mathbb{R}^{4n+T} \bigr\}, $$

where

$$ g\bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime}\bigr):=\sum_{i=1}^{n}r_{i} \bigl(y^{\prime}_{i} - y_{i}\bigr)+\chi_{\mathcal{A}} \bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime}\bigr), $$

and

$$ h\bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime}\bigr):=\theta \Biggl(\sum_{i=1}^{n} \bigl(z_{i} -z^{\prime }_{i}\bigr)^{2} - \sum _{i=1}^{n}\bigl(z_{i}+z^{\prime}_{i} \bigr) \Biggr) - \sum_{i=1}^{n} \bigl(c(y_{i}) + d\bigl(y^{\prime}_{i}\bigr) \bigr). $$

\(\chi_{\mathcal{A}}\) is the indicator function on \(\mathcal{A}\).

In a similar way to the preceding DCA algorithm, we compute a sub-gradient of the function h defined by

$$ h\bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime}\bigr):=\theta \Biggl(\sum_{i=1}^{n} \bigl(z_{i} -z^{\prime }_{i}\bigr)^{2} - \sum _{i=1}^{n}\bigl(z_{i}+z^{\prime}_{i} \bigr) \Biggr) - \sum_{i=1}^{n} \bigl(c(y_{i}) + d\bigl(y^{\prime}_{i}\bigr) \bigr). $$

Define \(\mathcal{C}\) and \(\mathcal{D}\) as the gradient vectors of c(⋅) and d(⋅), respectively. From the definition of h(⋅) we have

$$ \everymath{\displaystyle} \begin{array}{c} \bigl(\nu^{k}, \mathbf{v}^{k}, \mathbf{v}^{\prime k}, \mathbf{w}^{k}, \mathbf{w}^{\prime k}\bigr)\in\partial h( \mathbf{u}^{k}, \mathbf{y}^{k}, \mathbf{y}^{\prime k}, \mathbf{z}^{k}, \mathbf{z}^{\prime k}) \\[2pt] \Updownarrow \\[2pt] \nu^{k}_{t}=0,\quad v^{k}_{i}=\mathcal{C}_i|_{y=y^{k}},\quad v^{\prime k}_{i}=\mathcal{D}_i|_{y^{\prime}=y^{\prime k}},\\[4pt] w^{k}_{i}=\theta\bigl(2\bigl(z^{k}_{i}-z^{\prime k}_{i}\bigr)-1\bigr),\quad w^{\prime k}_{i}=\theta\bigl(2\bigl(z^{\prime k}_{i}-z^{k}_{i}\bigr)-1\bigr), \end{array} $$

for all i=1,…,n and t=1,…,T. Secondly, we must compute an optimal solution of the following linear program:

$$ \min\Biggl\{\sum_{i=1}^{n}r_{i} \bigl(y^{\prime}_{i} - y_{i}\bigr)- \bigl\langle\bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime k}, \mathbf{v}^{k}, \mathbf{v}^{\prime k}, \mathbf{w}^{k}, \mathbf{w}^{\prime k}\bigr)\bigr\rangle: \bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime}\bigr)\in A\Biggr\}, $$
(66)

which will be (u k+1,y k+1,y k+1,z k+1,z k+1). Any standard LP solver can be used to solve (66).

To sum up, the DCA algorithm will be as follows:

Algorithm

(Algorithm DCA for the Program (44) When the Transaction Cost Functions Are Concave)

  • Step 1: Let ϵ be a sufficiently small positive number, choose an initial point such as (u 0,y 0,y ′0,z 0,z ′0)∈ℝ4n+T, define k as the iteration indicator and set k=0;

  • Step 2:

    For i=1,…,n and t=1,…,T, set

    \(\nu^{k}_{t}=0\),

    \(v^{k}_{i}=\mathcal{C}_{i}|_{y=y^{k}}\),

    \(v^{\prime k}_{i}=\mathcal{D}_{i}|_{y^{\prime}=y^{\prime k}}\),

    \(w^{k}_{i}=\theta(2(z^{k}_{i}-z^{\prime k}_{i})-1)\),

    \(w^{\prime k}_{i}=\theta(2(z^{\prime k}_{i}-z^{k}_{i})-1)\),

    and solve the following linear program:

    $$ \min\Biggl\{\sum_{i=1}^{n} r_{i} \bigl(y^{\prime}_{i} - y_{i}\bigr)- \bigl\langle\bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime k}, \mathbf{v}^{k}, \mathbf{v}^{\prime k}, \mathbf{w}^{k}, \mathbf{w}^{\prime k}\bigr)\bigr\rangle: \bigl( \mathbf{u} , \mathbf{y} , \mathbf{y}^{\prime}, \mathbf{z} , \mathbf{z}^{\prime}\bigr)\in A\Biggr\}, $$

    to obtain (u k+1,y k+1,y k+1,z k+1,z k+1).

  • Step 3: If ∥u k+1u k∥+∥y k+1y k∥+∥y k+1y k∥+∥z k+1z k∥+∥z k+1z k∥≤ϵ, then stop, the stopping criterion is met and (u k+1,y k+1,y k+1,z k+1,z k+1) is an optimal solution, otherwise set k=k+1 and go to Step 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Thi, H.A., Moeini, M. Long-Short Portfolio Optimization Under Cardinality Constraints by Difference of Convex Functions Algorithm. J Optim Theory Appl 161, 199–224 (2014). https://doi.org/10.1007/s10957-012-0197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0197-0

Keywords

Navigation