Skip to main content
Log in

Abstract

This paper reviews portfolio selection models and provides perspective on some open issues. It starts with a review of the classic Markowitz mean-variance framework. It then presents the intertemporal portfolio choice approach developed by Merton and the fundamental notion of dynamic hedging. Martingale methods and resulting portfolio formulas are also reviewed. Their usefulness for economic insights and numerical implementations is illustrated. Areas of future research are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Brennan, Schwartz and Lagnado [9] provide numerical results for a class of low dimensional problems when utilities are constant relative risk averse. Explicit solutions are available in a few special cases (e.g., Wachter [10]).

  2. Merton [16] provides an analytical formula for the efficient frontier (the set of efficient portfolios) and derives a mutual fund decomposition of optimal portfolios.

  3. Maccheroni, Marinacci, Rustichini and Taboga [17] propose a monotone extension of mean-variance preferences and examine its implications for portfolio selection.

  4. Rothschild and Stiglitz [18] show that an increase in risk in the second order stochastic dominance sense can be compatible with a decrease in variance. A risk averse individual may therefore be led to prefer (resp. reject) certain gambles with higher (resp. lower) variance.

  5. Mean-variance preferences, extended to a dynamic setting, do not have a recursive structure. This precludes the straightforward application of dynamic programming methods and leads to the problem of time inconsistency. A resolution of this problem is proposed by Basak and Chabakauri [20] and extended by Bjork, Murgoci and Zhou [21].

  6. Results can be generalized to stochastic time-preferences.

  7. An alternative is to apply a change of variables studied by Doss [26] in order to stabilize the volatility coefficients of the processes to be simulated (see Detemple, Garcia and Rindisbacher [8, 27]). The portfolio formula can be rewritten in terms of the transformed state variables. Portfolio components can then be calculated by Monte Carlo simulation based on the transformed state variables.

  8. Simulation-based methods have also been proposed by Cvitanic, Goukassian and Zapatero [28], Brandt, Goyal and Santa-Clara [29] and others. A review of simulation methods for portfolio choice appears in Detemple, Garcia and Rindisbacher [30]. Asymptotic properties of simulation-based portfolio estimators are derived in Detemple, Garcia and Rindisbacher [31]. A comparison of methods is carried out in Detemple, Garcia and Rindisbacher [32].

  9. As the HARA utility fails to satisfy the Inada condition at 0, this implementation is based on an extension of Theorem 4.1 (see [8]).

  10. Models seeking to explain the demand for bonds include Wachter [39] and Lioui [36].

  11. Solutions with non-zero shadow price have been found for special cases (e.g., Detemple and Rindisbacher [15, 54]).

  12. Various applications of portfolio models with jumps can be found in the literature. Examples include Ahn and Thompson [55], who focus on implications for the term structure of interest rates, Liu, Longstaff and Pan [56], who study the effects of rare events affecting prices and volatility, and Das and Uppal [57], who examine the impact of systemic risk on international portfolios.

References

  1. Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  2. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  3. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 273–413 (1971)

    Article  MathSciNet  Google Scholar 

  4. Pliska, S.: A stochastic calculus model of continuous trading: optimal portfolios. Math. Oper. Res. 11, 371–382 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Optimal portfolio and consumption decisions for a “small investor” on a finite horizon. SIAM J. Control Optim. 25, 1557–1586 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cox, J.C., Huang, C.-F.: Optimal consumption and portfolio policies when asset prices follow a diffusion process. J. Econ. Theory 49, 33–83 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ocone, D., Karatzas, I.: A generalized Clark representation formula, with application to optimal portfolios. Stoch. Stoch. Rep. 34, 187–220 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Detemple, J.B., Garcia, R., Rindisbacher, M.: A Monte-Carlo method for optimal portfolios. J. Finance 58, 401–446 (2003)

    Article  Google Scholar 

  9. Brennan, M., Schwartz, E., Lagnado, R.: Strategic asset allocation. J. Econ. Dyn. Control 21, 1377–1403 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wachter, .J.: Portfolio and consumption decisions under mean-reverting returns: an exact solution for complete markets. J. Financ. Quant. Anal. 37, 63–91 (2002)

    Article  Google Scholar 

  11. Sorensen, C.: Dynamic asset allocation and fixed income management. J. Financ. Quant. Anal. 34, 513–531 (1999)

    Article  Google Scholar 

  12. Lioui, A., Poncet, P.: On optimal portfolio choice under stochastic interest rates. J. Econ. Dyn. Control 25, 1141–1865 (2001)

    Article  MathSciNet  Google Scholar 

  13. Lioui, A., Poncet, P.: International asset allocation: a new perspective. J. Bank. Finance 27, 2203–2230 (2003)

    Article  MathSciNet  Google Scholar 

  14. Munk, C., Sorensen, C.: Optimal consumption and investment strategies with stochastic interest rates. J. Bank. Finance 28, 1987–2013 (2004)

    Article  Google Scholar 

  15. Detemple, J., Rindisbacher, M.: Dynamic asset allocation: portfolio decomposition formula and applications. Rev. Financ. Stud. 23, 25–100 (2010)

    Article  Google Scholar 

  16. Merton, R.C.: An analytic derivation of the efficient portfolio frontier. J. Financ. Quant. Anal. 7, 1851–1872 (1972)

    Article  Google Scholar 

  17. Maccheroni, F., Marinacci, M., Rustichini, A., Taboga, M.: Portfolio selection with monotone mean-variance preferences. Math. Finance 19, 487–521 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rothschild, M., Stiglitz, J.E.: Increasing risk I: A definition. J. Econ. Theory 2, 225–243 (1970)

    Article  MathSciNet  Google Scholar 

  19. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  20. Basak, S., Chabakauri, G.: Dynamic mean-variance asset allocation. Rev. Financ. Stud. 23, 2970–3016 (2010)

    Article  Google Scholar 

  21. Björk, T., Murgoci, A., Zhou, X.Y.: Mean-variance portfolio optimization with state-dependent risk aversion. Math. Finance (2012). doi:10.1111/j.1467-9965.2011.00515.x

    Google Scholar 

  22. Cox, J.C., Ross, S.A.: The valuation of options for alternative stochastic processes. J. Financ. Econ. 3, 145–166 (1976)

    Article  Google Scholar 

  23. Harrison, M.J., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Harrison, M.J., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215–260 (2001)

    Article  MathSciNet  Google Scholar 

  25. Nualart, D.: The Malliavin Calculus and Related Topics. Springer, New York (1995)

    Book  MATH  Google Scholar 

  26. Doss, H.: Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. Henri Poincaré B, Probab. Stat. 13, 99–125 (1977)

    MATH  MathSciNet  Google Scholar 

  27. Detemple, J., Garcia, R., Rindisbacher, M.: Representation formulas for Malliavin derivatives of diffusion processes. Finance Stoch. 9, 349–367 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Cvitanic, J., Goukasian, L., Zapatero, F.: Monte Carlo computation of optimal portfolio in complete markets. J. Econ. Dyn. Control 27, 971–986 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Brandt, M.W., Goyal, A., Santa-Clara, P., Stroud, J.R.: A simulation approach to dynamic portfolio choice with an application to learning about return predictability. Rev. Financ. Stud. 18, 831–873 (2005)

    Article  Google Scholar 

  30. Detemple, J., Garcia, R., Rindisbacher, M.: Simulation methods for optimal portfolios. In: Birge, J.R., Linetsky, V. (eds.) Handbooks Oper. Res. Management Sci., vol. 15, pp. 867–923. Elsevier, Amsterdam (2008)

    Google Scholar 

  31. Detemple, J., Garcia, R., Rindisbacher, M.: Asymptotic properties of Monte Carlo estimators of diffusion processes. J. Econom. 134, 1–68 (2006)

    Article  MathSciNet  Google Scholar 

  32. Detemple, J., Garcia, R., Rindisbacher, M.: Intertemporal asset allocation: a comparison of methods. J. Bank. Finance 29, 2821–2848 (2005)

    Article  Google Scholar 

  33. Jamshidian, F.: An exact bond option formula. J. Finance 44, 205–209 (1989)

    Article  Google Scholar 

  34. Geman, H.: The importance of the forward neutral probability in a stochastic approach of interest rates. Working Paper, ESSEC (1989)

  35. Geman, H., El Karoui, N., Rochet, J.C.: Changes of numéraire, changes of probability measures and option pricing. J. Appl. Probab. 32, 443–458 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lioui, A.: The asset allocation puzzle is still a puzzle. J. Econ. Dyn. Control 31, 1185–1216 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Heath, D., Jarrow, R.A., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992)

    Article  MATH  Google Scholar 

  38. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wachter, J.: Risk aversion and allocation to Long-term bonds. J. Econ. Theory 112, 325–333 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.L.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 702–730 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  41. Cvitanic, J., Karatzas, I.: Convex duality in constrained portfolio optimization. Ann. Appl. Probab. 2, 718–767 (1992)

    Article  MathSciNet  Google Scholar 

  42. Bakshi, G., Cao, C., Chen, Z.: Empirical performance of alternative option pricing model. J. Finance 52, 2003–2049 (1997)

    Article  Google Scholar 

  43. Bates, D.: Post-’87 crash fears in S&P 500 futures options. J. Econom. 94, 181–238 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  44. Eraker, B.M., Johannes, M., Polson, N.: The impact of jumps in equity index volatility and returns. J. Finance 58, 1269–1300 (2003)

    Article  Google Scholar 

  45. Aase, K.K.: Optimum portfolio diversification in a general continuous-time model. Stoch. Process. Appl. 18, 81–98 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  46. Jeanblanc-Picqué, M., Pontier, M.: Optimal portfolio for a small investor in a market model with discontinuous prices. Appl. Math. Optim. 22, 287–310 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  47. Shirakawa, H.: Optimal dividend and portfolio decisions with poisson and diffusion-type return process. Working Paper, Tokyo Institute of Technology (1990)

  48. Bardhan, I., Chao, X.: Martingale analysis for assets with discontinuous returns. Math. Oper. Res. 20, 243–256 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  49. Bardhan, I., Chao, X.: On martingale measures when asset returns have unpredictable jumps. Stoch. Process. Appl. 63, 35–54 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  50. Kallsen, J.: Optimal portfolios for exponential Lévy processes. Math. Methods Oper. Res. 51, 357–374 (2000)

    Article  MathSciNet  Google Scholar 

  51. Emmer, S., Kluppelberg, C.: Optimal portfolios when stock prices follow an exponential Lévy process. Finance Stoch. 8, 17–44 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  52. Aït-Sahalia, Y., Cacho-Diaz, J., Hurd, T.R.: Portfolio choice with jumps: a closed form solution. Ann. Appl. Probab. 19, 556–584 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  53. Jin, X., Zhang, A.X.: Decomposition of optimal portfolio weight in a jump-diffusion model and its applications. Rev. Financ. Stud. 25, 2877–2919 (2012)

    Article  Google Scholar 

  54. Detemple, J., Rindisbacher, M.: Closed form solutions for optimal portfolio selection with stochastic interest rate and investment constraints. Math. Finance 15, 539–568 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  55. Ahn, C.M., Thompson, H.E.: Jump-Diffusion processes and the term structure of interest rates. J. Finance 43, 155–174 (1988)

    Article  MathSciNet  Google Scholar 

  56. Liu, J., Longstaff, F.A., Pan, J.: Dynamic asset allocation with event risk. J. Finance 58, 231–259 (2003)

    Article  Google Scholar 

  57. Das, S., Uppal, R.: Systemic risk and international portfolio choice. J. Finance 59, 2809–2834 (2004)

    Article  Google Scholar 

  58. Allais, M.: Le comportement de L’homme rationnel devant le risque: critique des postulats et axiomes de l’école Américaine. Econometrica 21, 503–546 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  59. Ellsberg, D.: Risk, ambiguity, and the savage axioms. Q. J. Econ. 75, 643–669 (1961)

    Article  MATH  Google Scholar 

  60. Epstein, L.G., Zin, S.E.: Substitution, risk aversion, and the temporal behavior of consumption and asset returns: a theoretical framework. Econometrica 57, 937–969 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  61. Duffie, D., Epstein, L.: Stochastic differential utility. Econometrica 60, 353–394 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  62. Schroder, M., Skiadas, C.: Optimal consumption and portfolio selection with stochastic differential utility. J. Econ. Theory 89, 68–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the referee for useful comments. I am also pleased to acknowledge the comments of the editor, Franco Giannessi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Detemple.

Additional information

This review article is based on a keynote lecture given at the 2011 Conference on Applied Financial Economics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detemple, J. Portfolio Selection: A Review. J Optim Theory Appl 161, 1–21 (2014). https://doi.org/10.1007/s10957-012-0208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0208-1

Keywords

Navigation