Skip to main content
Log in

Hedging, Pareto Optimality, and Good Deals

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we will describe a framework that allows us to connect the problem of hedging a portfolio in finance to the existence of Pareto optimal allocations in economics. We will show that the solvability of both problems is equivalent to the No Good Deals assumption. We will then analyze the case of co-monotone additive monetary utility functions and risk measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In order to distinguish between two senses of arbitrage, we will henceforth refer to them as economic and financial arbitrage.

  2. For p<∞, B is isomorphic to the topological dual of B. For p=∞, B is the dual of B when the former is considered with the weak-star topology.

  3. http://www.dbresearch.com/servlet/reweb2.ReWEB?rwnode=DBR_INTERNET_EN-PROD$EM&rwobj=CDS.calias&rwsite=DBR_INTERNET_EN-PROD.

  4. Of course it should be modified by CDS spread, however, the result is still very small number.

  5. The internal access to AIG assessment of probability of default is impossible, made us to speculate this probability.

References

  1. Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Debreu, G.: Theory of Value: An Axiomatic Analysis of Economic Equilibrium. Cowles Foundation for Research in Economics at Yale University, Monograph, vol. 17. Wiley, New York (1959)

    MATH  Google Scholar 

  3. Werner, J.: Arbitrage and the existence of competitive equilibrium. Econometrica 55(6), 1403–1418 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Nielsen, L.T.: Asset market equilibrium with short-selling. Rev. Econ. Stud. 56(3), 467–473 (1989)

    Article  MATH  Google Scholar 

  5. Page, F.H. Jr., Wooders, M.H.: A necessary and sufficient condition for the compactness of individually rational and feasible outcomes and the existence of an equilibrium. Econ. Lett. 52(2), 153–162 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dana, R.-A., Van, C.L., Magnien, F.: On the different notions of arbitrage and existence of equilibrium. J. Econ. Theory 87(1), 169–193 (1999)

    Article  MATH  Google Scholar 

  7. Page, F.H. Jr., Wooders, M.H., Monteiro, P.K.: Inconsequential arbitrage. J. Math. Econ. 34(4), 439–469 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance (1999)

  9. Cochrane, J.H., Saa-Requejo, J.: Beyond arbitrage: good deal asset price bounds in incomplete markets. J. Polit. Econ. 108, 79–119 (2000)

    Article  Google Scholar 

  10. Černý, A.: Generalised sharpe ratios and asset pricing in incomplete markets. Eur. Finance Rev. 7, 191–223 (2003)

    Article  MATH  Google Scholar 

  11. Jaschke, S., Küchler, U.: Coherent risk measures and good-deal bounds. Finance Stoch. 5, 181–200 (2001). doi:10.1007/PL00013530

    Article  MathSciNet  MATH  Google Scholar 

  12. Cherny, A.S.: Equilibrium with coherent risk. arXiv:math/0605051 (2006)

  13. Assa, H., Balbás, A.: Good deals and compatible modification of risk and pricing rule: a regulatory treatment. Math. Financ. Econ. 4, 253–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Applications of Mathematics (New York), vol. 39. Springer, New York (1998)

    MATH  Google Scholar 

  15. Tyrrell Rockafellar, R., Uryasev, S., Zabarankin, M.: Generalized deviations in risk analysis. Finance Stoch. 10(1), 51–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Press, Singapore (2002)

    Book  MATH  Google Scholar 

  17. Delbaen, F.: Coherent risk measures on general probability spaces. In: Advances in Finance and Stochastics, pp. 1–37. Springer, Berlin (2002)

    Chapter  Google Scholar 

  18. Balbás, A., Balbás, B., Heras, A.: Optimal reinsurance with general risk measures. Insur. Math. Econ. 44(3), 374–384 (2009)

    Article  MATH  Google Scholar 

  19. Balbás, A., Balbás, R., Garrido, J.: Extending pricing rules with general risk functions. Eur. J. Oper. Res. 201(1), 23–33 (2010)

    Article  MATH  Google Scholar 

  20. Balbás, A., Balbás, R., Mayoral, S.: Portfolio choice and optimal hedging with general risk functions: a simplex-like algorithm. Eur. J. Oper. Res. 192(2), 603–620 (2009)

    Article  MATH  Google Scholar 

  21. Černý, A., Hodges, S.: Coherent risk measures on general probability spaces. In: Mathematical Finance, Bachelier Congress 2000, pp. 175–202. Springer, Berlin (2002)

    Google Scholar 

  22. Filipović, D., Svindland, G.: The Canonical Model Space for Law-Invariant Convex Risk Measures is L 1 (2008). http://sfi.epfl.ch/page85019.html

  23. Filipović, D., Kupper, M.: Equilibrium prices for monetary utility functions. Int. J. Theor. Appl. Finance 11(3), 325–343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jouini, E., Schachermayer, W., Touzi, N.: Optimal risk sharing for law invariant monetary utility functions. Math. Finance 18(2), 269–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, S.S., Young, V.R., Panjer, H.H.: Axiomatic characterization of insurance prices. Insur. Math. Econ. 21(2), 173–183 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97(2), 255–261 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Föllmer, H., Schied, A.: Stochastic Finance. de Gruyter Studies in Mathematics, vol. 27. de Gruyter, Berlin (2004)

    Book  MATH  Google Scholar 

  28. Acerbi, C.: Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Finance 26(7), 1505–1518 (2002)

    Article  Google Scholar 

  29. Kusuoka, S.: On law invariant coherent risk measures. In: Advances in Mathematical Economics, vol. 3, pp. 83–95. Springer, Tokyo (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirbod Assa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assa, H., Karai, K.M. Hedging, Pareto Optimality, and Good Deals. J Optim Theory Appl 157, 900–917 (2013). https://doi.org/10.1007/s10957-012-0209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0209-0

Keywords

Navigation