Skip to main content
Log in

A Survey on Fractional-Order Iterative Learning Control

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, an overview of fractional-order iterative learning control (FOILC) is presented including main developments of this field since 2001. Many theoretical and experimental results are provided to show the advantages of FOILC such as the improvement of transient and steady-state performances. Some unique characters of fractional-order operators are illustrated to show the new features and techniques of FOILC. A number of unsolved problems are briefly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If either G(s) or H(s) is related to s ν, where ν is a non-integer constant, then (8) becomes a FOILC learning law. Moreover, in this case T u =I, so that lim k→∞ e k (t)=0 for all t∈[0,t f ].

References

  1. Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operation of robots by learning. J. Robot. Syst. 1(2), 123–140 (1984)

    Article  Google Scholar 

  2. Chen, Y.Q., Moore, K.L., Ahn, H.-S.: Iterative Learning Control. Encyclopedia of the Science of Learning. Springer, New York (2012). Book chapter of Seel, N. M. (Editor in Chief)

    Google Scholar 

  3. Ahn, H.-S., Moore, K.L., Chen, Y.Q.: Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems. Springer, New York, London (2007)

    MATH  Google Scholar 

  4. Sun, M.X., Wang, D.W.: Higher relative degree nonlinear systems with ILC using lower-order differentiations. Asian J. Control 4(1), 38–48 (2008)

    Article  Google Scholar 

  5. Norrlof, M.: Disturbance rejection using an ILC algorithm with iteration varying filters. Asian J. Control 6(3), 432–438 (2008)

    Article  Google Scholar 

  6. Lee, F.-S., Chien, C.-J., Wang, J.-C., Liu, J.-J.: Application of a model-based iterative learning technique to tracking control of a piezoelectric system. Asian J. Control 7(1), 29–37 (2008)

    Article  Google Scholar 

  7. Ye, Y., Wang, D.W., Zhang, B., Wang, Y.: Simple LMI based learning control design. Asian J. Control 11(1), 74–77 (2009)

    Article  MathSciNet  Google Scholar 

  8. Xu, J.-X.: The frontiers of iterative learning control—Part I. J. Syst. Control Inf. 46(2), 563–594 (2002)

    Google Scholar 

  9. Xu, J.-X.: The frontiers of iterative learning control—Part II. J. Syst. Control Inf. 46(5), 233–243 (2002)

    Google Scholar 

  10. Xu, J.-X., Tan, Y.: Robust optimal design and convergence properties analysis of iterative learning control approaches. Automatica 38(11), 1867–1880 (2001)

    Article  MathSciNet  Google Scholar 

  11. Han, C., Qu, Z.H., Kaloust, J.H.: Nonlinar iterative learning for a class of nonlinear systems based on Lyapunov’s direct method. In: Proceedings of American Control Conference, pp. 3024–3028. IEEE, New York (1995)

    Google Scholar 

  12. Frueh, M., Rogers, E.: Nonlinear iterative learning by an adaptive Lyapunov technique. Int. J. Control 73(10), 858–870 (2000)

    Article  Google Scholar 

  13. Sulikowski, B., Galkowski, K., Rogers, E., Owens, D.H.: PI Control of discrete linear repetitive processes. Automatica 42(5), 877–880 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sulikowski, B., Galkowski, K., Rogers, E.: PI output feedback control of differential linear repetitive processes. Automatica 44(5), 1442–1445 (2008)

    Article  MathSciNet  Google Scholar 

  15. Wang, H.B., Wang, Y.: Iterative learning control for nonlinear systems with uncertain state delay and arbitrary initial error. J. Control Theory Appl. 9(4), 541–547 (2011)

    Article  MathSciNet  Google Scholar 

  16. Meng, D.Y., Jia, Y.M., Du, J.P., Yuan, S.Y.: Feedback iterative learning control for time-delay systems based on 2D analysis approach. J. Control Theory Appl. 8(4), 457–463 (2010)

    Article  MathSciNet  Google Scholar 

  17. Yin, C.K., Xu, J.X., Hou, Z.S.: A high-order internal model based iterative learning control scheme for nonlinear systems with time-iteration-varying parameters. IEEE Trans. Autom. Control 55(1), 2665–2670 (2010)

    Article  MathSciNet  Google Scholar 

  18. Arif, M., Ishihara, T., Inooka, H.: Incorporation of experience in iterative learning controllers using locally weighted learning. Automatica 37(6), 881–888 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moore, K.L., Lashhab, F.: Iteration-domain closed-loop frequency response shaping for discrete-repetitive processes. In: Proceedings of American Control Conference, pp. 1284–1289. IEEE, New York (2010)

    Google Scholar 

  20. Fine, B.T., Mishra, S., Tomizuka, M.: Model inverse based iterative learning control using finite impulse response approximations. In: Proceedings of American Control Conference, pp. 931–936. IEEE, New York (2009)

    Google Scholar 

  21. Mishra, S.: Fundamental Issues in Iterative Learning Controller Design: Convergence, Robustness, and Steady State Performance. Ph.D. Dissertation, University of California, Berkeley (2008)

  22. Ahn, H.-S., Chen, Y.Q., Moore, K.L.: Iterative learning control: Brief survey and categorization. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 37(6), 1099–1121 (2007)

    Article  Google Scholar 

  23. Rogers, E.: Iterative learning control—from Hilbert spaces to robotics to healthcare engineering. United Kingdom Automatic Control Conference Annual Lecture (2007). URL: http://eprints.ecs.soton.ac.uk/14560/

  24. Le, F., Markovsky, I., Freeman, C.T., Rogers, E.: Identification of electrically stimulated muscle models of stroke patients. Control Eng. Pract. 18(4), 396–407 (2010)

    Article  Google Scholar 

  25. Chen, Y.Q., Moore, K.L.: On Dα-type iterative learning control. In: Proceedings of IEEE Conference on Decision and Control, vol. 5, pp. 4451–4456. IEEE, New York (2001)

    Google Scholar 

  26. Ye, Y., Tayebi, A., Liu, X.: All-pass filtering in iterative learning control. Automatica 45(1), 257–264 (2009)

    Article  MATH  Google Scholar 

  27. Li, Y., Chen, Y.Q., Ahn, H.-S.: Fractional-order iterative learning control for fractional-order linear systems. Asian J. Control 13(1), 1–10 (2011)

    Article  MathSciNet  Google Scholar 

  28. Lazarevic, M.P.: PD α-type iterative learning control for fractional LTI system. In: Proceedings of International Congress of Chemical and Process Engineering, p. 0359. Czech Society of Chemical Engineering, Praha (2004)

    Google Scholar 

  29. Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  30. Li, Y., Chen, Y.Q., Ahn, H.-S.: A generalized fractional-order iterative learning control. In: Proceedings of IEEE Conference on Decision and Control and European Control Conference, pp. 5356–5361. IEEE, New York (2011)

    Chapter  Google Scholar 

  31. Papoulis, A.: The Fourier Integral and its Applications. McGraw-Hill, New York (1962)

    MATH  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  33. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  34. Bien, Z., Huh, K.M.: Higher-order iterative learning control algorithm. IEE Proc., Control Theory Appl. 136(3), 105–112 (1989)

    Article  MATH  Google Scholar 

  35. Chen, Y.Q., Wen, C.Y.: Iterative Learning Control—Convergence, Robustness and Applications. Springer, London (1999)

    Book  MATH  Google Scholar 

  36. Ruan, X., Bien, Z., Wang, Q.: Convergence properties of iterative learning control processes in the sense of the Lebesgue-p norm. Asian J. Control 14(4), 1095–1107 (2012)

    Article  MathSciNet  Google Scholar 

  37. Moore, K.L., Dahleh, M., Bhattacharyya, S.P.: Iterative learning control: a survey and new results. J. Robot. Syst. 9(5), 563–594 (1992)

    Article  MATH  Google Scholar 

  38. Moore, K.L., Chen, Y.Q., Ahn, H.-S.: Iterative learning control: A tutorial and big picture view. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2352–2357 (2006)

    Chapter  Google Scholar 

  39. Goh, C.J.: A frequency domain analysis of learning control. ASME J. Dyn. Syst. Meas. Control 116(4), 781–786 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hideg, L.M., Judd, R.P.: Frequency domain analysis of learning systems. In: Proceedings of the 27th IEEE Conference on Decisions and Control, pp. 586–591 (1988)

    Chapter  Google Scholar 

  41. Lan, Y.-H., He, L.-J.: P-type iterative learning control of fractional order nonlinear time-delay systems. In: Proceedings of the 24th Chinese Control and Decision Conference, pp. 1027–1031 (2012)

    Google Scholar 

  42. Lazarevic, M.P.: PD α-type iterative learning control for fractional LTI system. In: Proceedings of the 4th International Carpathian Control Conference, pp. 869–872 (2003)

    Google Scholar 

  43. Lazarevic, M.P.: Iterative learning control for fractional linear time delay system: PI β D α type. In: Proceedings of the 17th International Congress of Chemical and Process Engineering, p. 5.19 (2006)

    Google Scholar 

  44. Li, Y., Chen, Y.Q., Ahn, H.-S.: Fractional order iterative learning control. In: Proceedings of the ICROS-SICE International Joint Conference, pp. 2106–3110 (2009)

    Google Scholar 

  45. Lazarevic, M.P.: Iterative learning feedback control for nonlinear fractional order system—PD α type. In: Proceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications (2012). Paper No. 259

    Google Scholar 

  46. Li, Y., Ahn, H.-S., Chen, Y.Q.: Iterative learning control of a class of fractional order nonlinear systems. In: Proceedings of the IEEE International Symposium on Intelligent Control, Part of IEEE Multi-Conference on Systems and Control, pp. 779–782 (2010)

    Google Scholar 

  47. Li, Y., Chen, Y.Q., Ahn, H.-S.: Fractional order iterative learning control for fractional order linear systems. Asian J. Control 13(1), 54–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, Y., Chen, Y.Q., Ahn, H.-S.: On the PD α-type iterative learning control for the fractional-order nonlinear systems. In: Proceedings of the American Control Conference, pp. 4320–4325 (2011)

    Google Scholar 

  49. Li, Y., Chen, Y.Q., Ahn, H.-S.: Convergence analysis of fractional-order iterative learning control. Control Theory Appl. 29(8), 1027–1031 (2012)

    Google Scholar 

  50. Xu, J.-X., Hou, Z.-S.: On learning control: the state of the art and perspective. Acta Autom. Sin. 31(6), 943–955 (2005)

    Google Scholar 

  51. Lee, H.-S., Bien, Z.: A note on convergence property of iterative learning controller with respect to sup norm. Automatica 33(8), 1591–1593 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Li, H.S., Huang, J.C., Liu, D., Zhang, J.H., Teng, F.L.: Design of fractional order iterative learning control on frequency domain. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, pp. 2056–2060 (2011)

    Google Scholar 

  53. Xu, M., Tan, W.: Representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions. Sci. China Ser. G, Phys. Astron. 46(2), 145–157 (2003)

    Article  Google Scholar 

  54. Sheng, H., Chen, Y.Q., Qiu, T.S.: Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. Springer, London, New York (2012)

    Book  MATH  Google Scholar 

  55. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Podlubny, I., Heymans, N.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45(5), 765–772 (2006)

    Article  Google Scholar 

  57. Zhang, F.R., Li, C.P.: Remarks on the initialization of Caputo derivative. In: Proceedings of the IEEE/ASME 8th IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, pp. 325–329 (2012)

    Chapter  Google Scholar 

  58. Xu, J.-X., Yan, R.: On initial conditions in iterative learning control. IEEE Trans. Autom. Control 50(9), 1349–1354 (2005)

    Article  MathSciNet  Google Scholar 

  59. Lan, Y.H.: Iterative learning control with initial state learning for fractional order nonlinear systems. Comput. Math. Appl. (2012). doi:10.1016/j.camwa.2012.03.086

    Google Scholar 

  60. Song, X.N., Tejado, I., Chen, Y.Q.: Remote stabilization for fractional-order systems via communication networks. In: Proceedings of the American Control Conference, pp. 6698–6703. IEEE, New York (2010)

    Google Scholar 

  61. Chen, Y.Q.: Ubiquitous fractional order controls? In: Proceedings of the 2nd IFAC Symposium on Fractional Derivatives and Applications, vol. 2 (2006). doi:10.3182/20060719-3-PT-4902.00081

    Google Scholar 

  62. Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Tian.

Additional information

This work is Supported by National Natural Science Foundation of China (61075092, 61104009), Natural Science Foundation of Shandong Province (ZR2011FM011, ZR2010AM007), Independent Innovation Foundation of Shandong University (2010TB022, 2011JC017).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Chen, Y., Ahn, HS. et al. A Survey on Fractional-Order Iterative Learning Control. J Optim Theory Appl 156, 127–140 (2013). https://doi.org/10.1007/s10957-012-0229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0229-9

Keywords

Navigation