Skip to main content

Advertisement

Log in

Optimal Thickness of a Cylindrical Shell Under a Time-Dependent Force

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We discuss thickness optimization problems for cylindrical tubes that are loaded by time-dependent applied force. This is a problem of shape optimization that leads to optimal control in linear elasticity theory. We determine the optimal thickness of a cylindrical tube by minimizing the deformation of the tube under the influence of an external force. The main difficulty is that the state equation is a hyperbolic partial differential equation of the fourth order. The first order necessary conditions for the optimal solution are derived. Based on them, a numerical method is set up and numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nestler, P.: Optimal thickness of a cylindrical shell – an optimal control problem in linear elasticity theory. Ann. Acad. Romanian Sci., Ser. Math. Appl. 4(2), 183–208 (2012)

    MathSciNet  Google Scholar 

  2. Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  3. Mróz, Z.: Variational methods in sensitivity analysis and optimal design. Eur. J. Mech. 13, 115–147 (1994)

    MATH  Google Scholar 

  4. Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization – Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16 (1992)

    Book  MATH  Google Scholar 

  5. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation and Computation. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  6. Delfour, M.C., Zolesio, J.-P.: Shapes and Geometries: Analysis, Differential Calculus and Optimization. SIAM, Philadelphia (2001)

    Google Scholar 

  7. Rozvany, G.: Structural Design via Optimality Criteria, Springer Series: Mechanics of Elastic and Inelastic Solids, vol. 8 (1989)

    Book  MATH  Google Scholar 

  8. Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  9. Chapelle, D., Bathe, K.J.: The Finite Element Analysis of Shells – Fundamentals. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  10. Ciarlet, Ph.: Introduction to Linear Shell Theory. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  11. Nestler, P.: Optimales Design einer Zylinderschale – eine Problemstellung der optimalen Steuerung in der Linearen Elastizitätstheorie, Südwestdeutscher Verlag für Hochschulschriften (2010)

  12. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  13. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  14. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. AMS, Providence (2010)

    Google Scholar 

  15. Ciarlet, Ph.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (2000)

    Google Scholar 

Download references

Acknowledgements

The author thanks L. Bittner and W. Schmidt (Greifswald) for introducing me to this topic. Moreover, he is very grateful to F. Tröltzsch (Berlin) for this support and extensive discussion during a revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nestler.

Additional information

Communicated by Z. Mróz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nestler, P. Optimal Thickness of a Cylindrical Shell Under a Time-Dependent Force. J Optim Theory Appl 158, 498–520 (2013). https://doi.org/10.1007/s10957-012-0255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0255-7

Keywords