Skip to main content
Log in

Lagrange Multiplier Rules for Weak Approximate Pareto Solutions of Constrained Vector Optimization Problems in Hilbert Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the Hilbert space case, in terms of proximal normal cone and proximal coderivative, we establish a Lagrange multiplier rule for weak approximate Pareto solutions of constrained vector optimization problems. In this case, our Lagrange multiplier rule improves the main result on vector optimization in Zheng and Ng (SIAM J. Optim. 21: 886–911, 2011). We also introduce a notion of a fuzzy proximal Lagrange point and prove that each Pareto (or weak Pareto) solution is a fuzzy proximal Lagrange point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrow, K.J., Barankin, E.W., Blackwell, D.: Admissible points of convex sets. In: Kuhn, H.W., Tucker, A.W. (eds.) Contribution to the Theory of Games, pp. 87–92. Princeton University Press, Princeton (1953)

    Google Scholar 

  2. Benson, H.P., Sun, E.: Outcome space partition of the weight set in multiobjecture linear programming. J. Optim. Theory Appl. 105, 17–36 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fibián, F.B.: Ideal, weakly efficient solutions for vector optimization problems. Math. Program. 93, 453–475 (2002)

    Article  MathSciNet  Google Scholar 

  4. Gopfert, A., Riahi, H., Tammer, C., Zalinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

    Google Scholar 

  5. Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)

    Book  Google Scholar 

  6. White, D.J.: Epsilon efficiency. J. Optim. Theory Appl. 49, 319–337 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zaffaroni, A.: Degrees of efficiency and degree of minimality. SIAM J. Control Optim. 42, 1071–1086 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. 122, 301–347 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gotz, A., Jahn, J.: The Lagrange multiplier rule in set-valued optimization. SIAM J. Optim. 10, 331–344 (1999)

    Article  MathSciNet  Google Scholar 

  10. Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, Berlin (2004)

    Book  Google Scholar 

  11. Modukhovich, B.S., Treiman, J.S., Zhu, Q.J.: An extended extremal principle with applications to multiobjective optimization. SIAM J. Optim. 14, 359–379 (2003)

    Article  MathSciNet  Google Scholar 

  12. Yang, X.Q., Jeyakumar, V.: First and second-order optimality conditions for composite multiobjective optimization. J. Optim. Theory Appl. 95, 209–224 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhu, Q.J.: Hamiltonian necessary conditions for a multiobjective optimal control problem with endpoint constraints. SIAM J. Control Optim. 39, 97–112 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gutierrez, C., Jimenez, E., Novo, V.: A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim. 17, 688–710 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Helbig, S., Pateva, D.: On several concepts for ε-efficiency. OR Spektrum 16, 179–186 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mordukhovich, B.S., Wang, B.W.: Necessary suboptimality and optimality conditions via variational principles. SIAM J. Control Optim. 41, 623–640 (2001)

    Article  MathSciNet  Google Scholar 

  17. Ngai, H.V., Thera, M.: A fuzzy necessary optimality condition for non-Lipschitz optimization. SIAM J. Optim. 12, 656–668 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tanaka, T.: A new approach to approximation of solutions in vector optimization problems. In: Fushimi, M., Tone, K. (eds.) Proceedings of APORS, 1994, pp. 497–504. World Scientific, Singapore (1995)

    Google Scholar 

  19. Zheng, X.Y., Ng, K.F.: A unified separation theory for closed sets in a Banach space and optimality conditions for vector optimization. SIAM J. Optim. 21, 886–911 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  21. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Springer, Berlin (2006)

    Google Scholar 

  22. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)

    MATH  Google Scholar 

  23. Schirotzek, W.: Nonsmooth Analysis. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  24. Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Am. Math. Soc. 303, 517–527 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of P.R. China (Grant No. 10761012), IRTSTYN and the Yunnan University Graduate Research Fund (ynuy201141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Yin Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X.Y., Li, R. Lagrange Multiplier Rules for Weak Approximate Pareto Solutions of Constrained Vector Optimization Problems in Hilbert Spaces. J Optim Theory Appl 162, 665–679 (2014). https://doi.org/10.1007/s10957-012-0259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0259-3

Keywords

Navigation