Skip to main content
Log in

Constructive Proofs of some Positivstellensätze for Compact Semialgebraic Subsets of ℝd

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In a broad sense, positivstellensätze are results about representations of polynomials, strictly positive on a given set. We give proofs of some known positivstellensätze for compact semialgebraic subsets of ℝd, which are to a large extent constructive and elementary. The presented proofs extend and simplify arguments of Berr, Wörmann (Manuscripta Math. 104(2):135–143, 2001) and Schweighofer (J. Pure Appl. Algebra 166(3):307–319, 2002; SIAM J. Optim. 15(3):805–825, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Positivstellensatz (positivstellensätze, in plural) is a term from real algebraic geometry borrowed from German and meaning ‘positive-locus theorem’.

  2. This representation theorem is usually attributed to Kadison [5] and Dubois [6], though as pointed out by Marshall [7] and Prestel [8] it was proved before Dubois by Krivine [9, 10].

  3. Just use Farkas’ lemma, the implication (iv) ⇒ (iii) from Theorems 1 and 2 in [16].

  4. Handelman proves (H) under the assumption dim(S)=d (see [3, Theorem I.3]).

  5. This is easy to verify for various concrete choices of l 1,…,l k , e.g., in the case k=2d and {l 1≥0,…,l k ≥0}=[0,1]d. In the general situation, the boundedness of B follows from the fact that B has the same recession cone as {l 1≥0,…,l k ≥0}. See, for example, [23, Sect. 8.2].

References

  1. Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289(2), 203–206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Handelman, D.: Representing polynomials by positive linear functions on compact convex polyhedra. Pac. J. Math. 132(1), 35–62 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jacobi, T., Prestel, A.: Distinguished representations of strictly positive polynomials. J. Reine Angew. Math. 532, 223–235 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Kadison, R.V.: A representation theory for commutative topological algebra. Mem. Am. Math. Soc. 1951(7), 39 (1951)

    MathSciNet  Google Scholar 

  6. Dubois, D.W.: A note on David Harrison’s theory of preprimes. Pac. J. Math. 21, 15–19 (1967)

    Article  MATH  Google Scholar 

  7. Marshall, M.: A general representation theorem for partially ordered commutative rings. Math. Z. 242(2), 217–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Prestel, A.: Representation of real commutative rings. Expo. Math. 23(1), 89–98 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krivine, J.-L.: Anneaux préordonnés. J. Anal. Math. 12, 307–326 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krivine, J.-L.: Quelques propriétés des préordres dans les anneaux commutatifs unitaires. C.R. Acad. Sci. Paris 258, 3417–3418 (1964)

    MathSciNet  MATH  Google Scholar 

  11. Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1974)

    Article  MathSciNet  Google Scholar 

  12. Berr, R., Wörmann, T.: Positive polynomials on compact sets. Manuscr. Math. 104(2), 135–143 (2001)

    Article  MATH  Google Scholar 

  13. Schweighofer, M.: An algorithmic approach to Schmüdgen’s positivstellensatz. J. Pure Appl. Algebra 166(3), 307–319 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pólya, G.: Über positive Darstellung von Polynomen. In: Vierteljahresschrift derNaturforschenden Gesellschaft in Zürich, vol. 73, pp. 141–145 (1928). reprinted in: Collected Papers, vol. 2, pp. 309–313. MIT Press, Cambridge (1974)

    Google Scholar 

  15. Powers, V., Reznick, B.: A new bound for Pólya’s theorem with applications to polynomials positive on polyhedra. J. Pure Appl. Algebra 164(1–2), 221–229 (2001). Effective methods in algebraic geometry (Bath, 2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schweighofer, M.: Optimization of polynomials on compact semialgebraic sets. SIAM J. Optim. 15(3), 805–825 (2005) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36. Springer, Berlin (1998)

    MATH  Google Scholar 

  18. Marshall, M.: Positive Polynomials and Sums of Squares. Mathematical Surveys and Monographs, vol. 146. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  19. Putinar, M., Sullivant, S. (eds.): Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and Its Applications, vol. 149. Springer, New York (2009)

    MATH  Google Scholar 

  20. Lasserre, J.B.: Moments, Positive Polynomials and their Applications. Imperial College Press Optimization Series, vol. 1. Imperial College Press, London (2010)

    MATH  Google Scholar 

  21. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Undergraduate Texts in Mathematics. Springer, New York (2007)

    Book  MATH  Google Scholar 

  22. Prestel, A., Delzell, C.N.: Positive Polynomials. Springer Monographs in Mathematics. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  23. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. Wiley, Chichester (1986)

    MATH  Google Scholar 

  24. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). Reprint of the 1952 edition

    MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referee for pointers to the literature and comments that helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadiy Averkov.

Additional information

Communicated by Horst Martini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averkov, G. Constructive Proofs of some Positivstellensätze for Compact Semialgebraic Subsets of ℝd . J Optim Theory Appl 158, 410–418 (2013). https://doi.org/10.1007/s10957-012-0261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0261-9

Keywords

Navigation