Skip to main content
Log in

On an Inequality of C. Sundberg: A Computational Investigation via Nonlinear Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The main goal of this article is to discuss a numerical method for finding the best constant in a Sobolev type inequality considered by C. Sundberg, and originating from Operator Theory. To simplify the investigation, we reduce the original problem to a parameterized family of simpler problems, which are constrained optimization problems from Calculus of Variations. To decouple the various differential operators and nonlinearities occurring in these constrained optimization problems, we introduce an appropriate augmented Lagrangian functional, whose saddle-points provide the solutions we are looking for. To compute these saddle-points, we use an Uzawa–Douglas–Rachford algorithm, which, combined with a finite difference approximation, leads to numerical results suggesting that the best constant is about five times smaller than the constant provided by an analytical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary Value Problems. North-Holland, Amsterdam (1983)

    Google Scholar 

  2. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Book  MATH  Google Scholar 

  3. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  4. Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge–Ampère equation in two-dimensions. Electron. Trans. Numer. Anal. 22, 71–96 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Delbos, F., Gilbert, J.Ch., Glowinski, R., Sinoquet, D.: Constrained optimization in seismic reflection tomography: a Gauss–Newton augmented Lagrangian approach. Geophys. J. Int. 164, 670–684 (2006)

    Article  Google Scholar 

  6. Caboussat, A., Glowinski, R., Pons, V.: An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem. J. Numer. Math. 17, 3–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caboussat, A., Glowinski, R., Leonard, A.: Looking for the best constant in a Sobolev inequality: a numerical approach. Calcolo 47, 211–238 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)

    Article  Google Scholar 

  9. Glowinski, R.: Approximation numérique des solutions périodiques de l’équation integro-differentielle \(du/dt + \phi(u) + \int_{0}^{1} {A}(t, \tau) u(\tau) \,d \tau= f\). J. Math. Anal. Appl. 41, 67–96 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glowinski, R., Keller, H.B., Reinhart, L.: Continuation-conjugate gradient methods for the least-squares solution of nonlinear boundary value problems. SIAM J. Sci. Stat. Comput. 4, 793–832 (1985)

    MathSciNet  Google Scholar 

  11. He, J.W., Glowinski, R.: Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution. Numer. Linear Algebra Appl. 7, 381–428 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dean, E.J., Glowinski, R., Guidoboni, G.: On the numerical solution of Bingham visco-plastic flow: old and new results. J. Non-Newton. Fluid Mech. 142, 36–62 (2007)

    Article  MATH  Google Scholar 

  13. Glowinski, R., Wachs, A.: On the numerical simulation of viscoplastic fluid flow. In: Ciarlet, P.G., Glowinski, R., Xu, J. (eds.) Handbook of Numerical Analysis, vol. 16, pp. 483–717. North-Holland, Amsterdam (2011)

    Google Scholar 

  14. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Glowinski, R., Marrocco, A.: Sur l’approximation par élements finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. C. R. Acad. Sci., Paris T. 278A, 1649–1652 (1974)

    MathSciNet  Google Scholar 

  16. Glowinski, R., Marrocco, A.: Sur l’approximation par élements finis et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Revue Française d’Automatique, Informatique, Recherche Opérationelle, Série Rouge (Analyse Numérique) R-2, 41–76 (1975)

  17. Glowinski, R., Marini, L.D., Vidrascu, M.: Finite-element approximations and iterative solutions of a fourth-order elliptic variational inequality. IMA J. Numer. Anal. 4, 127–167 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schäfer, M.: Parallel algorithms for the numerical solution of incompressible finite elasticity problems. SIAM J. Sci. Stat. Comput. 12, 247–259 (1991)

    Article  MATH  Google Scholar 

  19. Chan, T.F., Glowinski, R.: Finite element approximation and iterative solution of a class of mildly nonlinear elliptic equations. Stanford Report STAN-CS-78-674, Stanford University (1978)

  20. Chan, T.F., Glowinski, R.: Numerical methods for a class of mildly nonlinear elliptic equations. In: Atas do Decimo Primeiro Coloquio Brasileiro de Matematicas. Vol. I. C.N.D.C.T./IMPA, pp. 279–318 (1978)

    Google Scholar 

  21. Esser, J.E.: Primal-dual algorithms for convex models and application to image restoration, registration, and nonlocal inpainting. Ph.D. Thesis, Department of Mathematics, UCLA, Los Angeles, CA (2010)

  22. Zhang, Y.: Recent Advances in Alternating Direction Methods: Theory and Practice, IPAM Workshop: Numerical Methods for Continuous Optimization. UCLA, Los Angeles (2010)

    Google Scholar 

  23. Li, Ch.: Compressive sensing for 3D data processing tasks: applications, models, and algorithms. Ph.D. Thesis, Department of Computational and Applied Mathematics, Rice University, Houston, TX (2011)

Download references

Acknowledgements

This work was supported by the NSF (grant DMS-0913982).

The authors would like to thank Professor C. Sundberg, UT-Knoxville, for suggesting them to look at problem (1). They also thank X. Feng and S. Poole for the organization of the 2010 visit of the first author at ORNL and UT-Knoxville, Professor F. Giannessi and the two anonymous referees for helpful comments and suggestions. The support of University of Tennessee—Knoxville, ORNL and NSF (grant DMS-0913982) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Quaini.

Additional information

Dedicated to Richard Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glowinski, R., Quaini, A. On an Inequality of C. Sundberg: A Computational Investigation via Nonlinear Programming. J Optim Theory Appl 158, 739–772 (2013). https://doi.org/10.1007/s10957-013-0275-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0275-y

Keywords

Navigation