Skip to main content

Advertisement

Log in

Parameter Tuning of Multi-Proportional-Integral-Derivative Controllers Based on Optimal Switching Algorithms

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Under the framework of switched systems, this paper considers a multi-proportional-integral-derivative controller parameter tuning problem with terminal equality constraints and continuous-time inequality constraints. The switching time and controller parameters are decision variables to be chosen optimally. Firstly, we transform the optimal control problem into an equivalent problem with fixed switching instants by introducing an auxiliary function and a time-scaling transformation. Because of the complexity of constraints, it is difficult to solve the problem by conventional optimization techniques. To overcome this difficulty, a novel exact penalty function is introduced for these constraints. Furthermore, the penalty function is appended to the cost functional to form an augmented cost functional, giving rise to an approximate nonlinear parameter optimization problem that can be solved using any gradient-based method. Convergence results indicate that any local optimal solution of the approximate problem is also a local optimal solution of the original problem as long as the penalty parameter is sufficiently large. Finally, an example is provided to illustrate the effectiveness of the developed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64, 759–768 (1942)

    Google Scholar 

  2. Ho, W.K., Hang, C.C., Cao, L.S.: Tuning of PID controllers based on gain and phase margin specifications. Automatica 31, 497–502 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu, J.X., Hang, C.C., Liu, C.: Parallel structure and tuning of a fuzzy PID controller. Automatica 36, 673–684 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, W.D., Hwang, R.C., Hsieh, J.G.: A self-tuning PID control for a class of nonlinear systems based on the Lyapunov approach. J. Process Control 12, 233–242 (2002)

    Article  Google Scholar 

  5. Liu, G.P., Daley, S.: Optimal-tuning PID control for industrial systems. Control Eng. Pract. 9, 1185–1194 (2001)

    Article  Google Scholar 

  6. Meza, J.L., Santibanez, V., Soto, R., Llama, M.A.: Fuzzy self-tuning PID semiglobal regulator for robot manipulators. IEEE Trans. Ind. Electron. 59, 2709–2717 (2012)

    Article  Google Scholar 

  7. Ho, M.T., Lin, C.Y.: PID controller design for robust performance. IEEE Trans. Autom. Control 48, 1404–1409 (2003)

    Article  MathSciNet  Google Scholar 

  8. Ang, K.H., Gregory, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13, 559–576 (2005)

    Article  Google Scholar 

  9. Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21, 69–81 (2011)

    Article  Google Scholar 

  10. Chiou, J.S., Tsai, S.H., Liu, M.T.: A PSO-based adaptive fuzzy PID-controllers. Simul. Model. Pract. Theory 26, 49–59 (2012)

    Article  Google Scholar 

  11. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19, 59–70 (1999)

    Article  Google Scholar 

  12. Zhang, L.X., Gao, H.J.: Asynchronously switched control of switched linear systems with average dwell time. Automatica 46, 953–958 (2010)

    Article  MATH  Google Scholar 

  13. Long, L.J., Zhao, J.: Global stabilization for a class of switched nonlinear feedforward systems. Int. J. Syst. Sci. 60, 734–738 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43, 31–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Seatzu, C., Corona, D., Giua, A., Bemporad, A.: Optimal control of continuous-time switched affine systems. IEEE Trans. Autom. Control 51, 726–741 (2006)

    Article  MathSciNet  Google Scholar 

  16. Xu, X., Antsaklis, P.: Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Autom. Control 49, 2–16 (2004)

    Article  MathSciNet  Google Scholar 

  17. Egerstedt, M., Wardi, Y., Axelsson, H.: Transition-time optimization for switched-mode dynamical systems. IEEE Trans. Autom. Control 51, 110–115 (2006)

    Article  MathSciNet  Google Scholar 

  18. Kaya, C.Y., Noakes, J.L.: Computational method for time-optimal switching control. J. Optim. Theory Appl. 117, 69–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kamgarpoura, M., Tomlin, C.: On optimal control of non-autonomous switched systems with a fixed mode sequence. Automatica 48, 1177–1181 (2012)

    Article  Google Scholar 

  20. Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta–Notch protein signalling. Syst. Biol. 1, 170–183 (2004)

    Article  Google Scholar 

  21. Axelsson, H., Wardi, Y., Egerstedt, M., Verriest, E.: Gradient descent approach to optimal mode scheduling in hybrid dynamical systems. J. Optim. Theory Appl. 136, 167–186 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Loxton, R., Teo, K.L., Rehbock, V: Computational method for a class of switched system optimal control problems. IEEE Trans. Autom. Control 54, 2455–2460 (2009)

    Article  MathSciNet  Google Scholar 

  23. Caldwell, T.M., Murphey, T.D.: Switching mode generation and optimal estimation with application to skid-steering. Automatica 47, 50–64 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Caldwell, T.M., Murphey, T.D.: Single integration optimization of linear time-varying switched systems. IEEE Trans. Autom. Control 57, 1592–1597 (2012)

    Article  MathSciNet  Google Scholar 

  25. Ding, X., Wardi, Y., Egerstedt, M.: On-line optimization of switched-mode dynamical systems. IEEE Trans. Autom. Control 54, 2266–2271 (2009)

    Article  MathSciNet  Google Scholar 

  26. Gonzalez, H., Vasudevan, R., Kamgarpour, M., Sastry, S., Bajcsy, R., Tomlin, C.: Computable optimal control of switched systems with constraints. In: Proceedings of the 13th International Conference on Hybrid Systems, Stockholm, Sweden, pp. 51–60 (2010)

    Google Scholar 

  27. Sakawa, Y., Shindo, Y.: Optimal control of container cranes. Automatica 18, 257–266 (1982)

    Article  MATH  Google Scholar 

  28. Soler, M., Olivares, A., Staffetti, E.: Hybrid optimal control approach to commercial aircraft trajectory planning. J. Guid. Control Dyn. 33, 985–991 (2010)

    Article  Google Scholar 

  29. Gerdts, M., Kunkel, M.: A nonsmooth Newton’s method for discretized optimal control problems with state and control constraints. J. Ind. Manag. Optim. 4, 247–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu, C., Teo, K.L., Zhang, L., Bai, Y.: A new exact penalty function method for continuous inequality constrained optimization problems. J. Ind. Manag. Optim. 6, 895–910 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach for Optimal Control Problems. Longman Scientific & Technical, New York (1991)

    Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to Professor Franco Giannessi, Professor David G. Hull, the editor, and the anonymous reviewers for their constructive comments in improving the presentation and quality of this manuscript. This work was supposed by the Chinese National Outstanding Youth Foundation under Grant No. 61125306, the Major Program of Chinese National Natural Science Foundation under Grants Nos. 91016004 and 11190015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Zhang, K. & Sun, C. Parameter Tuning of Multi-Proportional-Integral-Derivative Controllers Based on Optimal Switching Algorithms. J Optim Theory Appl 159, 454–472 (2013). https://doi.org/10.1007/s10957-013-0306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0306-8

Keywords

Navigation