Abstract
In this paper, a subgradient-type method for solving nonsmooth multiobjective optimization problems on Riemannian manifolds is proposed and analyzed. This method extends, to the multicriteria case, the classical subgradient method for real-valued minimization proposed by Ferreira and Oliveira (J. Optim. Theory Appl. 97:93–104, 1998). The sequence generated by the method converges to a Pareto optimal point of the problem, provided that the sectional curvature of the manifold is nonnegative and the multicriteria function is convex.
Similar content being viewed by others
References
Gal, T., Hanne, T.: On the development and future aspects of vector optimization and MCDM. In: Cláco, J. (ed.) Multicriteria Analysis, pp. 130–145. Springer, Berlin (1997)
White, D.J.: A bibliography on the applications of mathematical programming multiple objective methods. J. Oper. Res. Soc. 41, 669–691 (1990)
Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)
Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5–29 (2004)
Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005)
Mäkelä, M.M., Männikkö, T.: Numerical solution of nonsmooth optimal control problems with an application to the continuous casting process. Adv. Math. Sci. Appl. 4, 491–515 (1994)
Miettinen, K., Mäkelä, M.M.: An interactive method for nonsmooth multiobjective optimization with an application to optimal control. Optim. Methods Softw. 2, 31–44 (1993)
Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005)
Udriste, C.: Convex Functions and Optimization Algorithms on Riemannian Manifolds. Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994)
Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002)
Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52(5), 1491–1498 (2003)
Attouch, H., Bolte, J., Redont, P., Teboulle, M.: Singular Riemannian barrier methods and gradient-projection dynamical systems for constrained optimization. Optimization 53(5–6), 435–454 (2004)
Rapcsák, T.: Local convexity on smooth manifolds. J. Optim. Theory Appl. 127(1), 165–176 (2005)
Azagra, D., Ferrera, J., López-Mesas, M.: Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)
Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31(1), 133–151 (2005)
Cruz Neto, J.X., Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Glob. Optim. 35, 53–69 (2006)
Ferreira, O.P.: Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313, 587–597 (2006)
Wang, J.H., Li, C.: Uniqueness of the singular points of vector fields on Riemannian manifolds under the γ-condition. J. Complex. 22(4), 533–548 (2006)
Li, C., Wang, J.H.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition. IMA J. Numer. Anal. 26(2), 228–251 (2006)
Ledyaev, Yu.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)
Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8, 197–226 (2008)
Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant α-theory. J. Complex. 24, 423–451 (2008)
Papa Quiroz, E.A., Quispe, E.M., Oliveira, P.R.: Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds. J. Math. Anal. Appl. 341(1), 467–477 (2008)
Barani, A., Pouryayevali, M.R.: Invariant monotone vector fields on Riemannian manifolds. Nonlinear Anal. 70(5), 1850–1861 (2009)
Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663–683 (2009)
Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009)
Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 49–69 (2009)
Wang, J.H., Huang, S.C., Li, C.: Extended Newton’s algorithm for mappings on Riemannian manifolds with values in a cone. Taiwan. J. Math. 13, 633–656 (2009)
Wang, J.H., Lopez, G., Martin-Marquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)
Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)
Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523–1560 (2011)
Tang, G., Huang, N.: Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Glob. Optim. 54(3), 493–509 (2011)
Wang, J.H., Yao, J.C., Li, C.: Gauss–Newton method for convex composite optimizations on Riemannian manifolds. J. Glob. Optim. 53(1), 5–28 (2012)
Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125–145 (2011)
Bento, G.C., Melo, J.G.: A subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012)
Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154, 88–107 (2012)
Ferreira, O.P., Silva, R.C.M.: Local convergence of Newton’s method under majorant condition in Riemannian manifolds. IMA J. Numer. Anal. 32, 1696–1713 (2012)
Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balk. J. Geom. Appl. 3(2), 89–100 (1998)
Shor, N.Z.: Minimization Algorithms for Non-differentiable Function. Springer, Berlin (1985)
Polyak, B.T.: Minimization of nonsmooth functionals. USSR Comput. Math. Math. Phys. 9, 14–29 (1969)
Alber, Ya.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81(1), 23–35 (1998)
Bertsekas, D.P., Nedic, A.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 56(1), 109–138 (2001)
Burachik, R.S., Iusem, A.N., Melo, J.G.: A primal dual modified subgradient algorithm with sharp Lagrangian. J. Glob. Optim. 46(3), 347–361 (2010)
Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97, 93–104 (1998)
Do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)
Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. Am. Math. Soc., Providence (1996)
Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balk. J. Geom. Appl. 5(1), 69–79 (2000)
Luc, T.D.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)
Fliege, J., Grãna Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)
Acknowledgements
The authors would like to extend their gratitude toward anonymous referees whose suggestions helped us to improve the presentation of this paper. The first author was partially supported by CNPq Grant 471815/2012-8, Project CAPES-MES-CUBA 226/2012, PROCAD-nf-UFG/UnB/IMPA, and FAPEG/CNPq. The second author was partially supported by CNPq GRANT 301625-2008 and PRONEX-Optimization (FAPERJ/CNPq).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Alfredo Iusem.
Rights and permissions
About this article
Cite this article
Bento, G.C., Cruz Neto, J.X. A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds. J Optim Theory Appl 159, 125–137 (2013). https://doi.org/10.1007/s10957-013-0307-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-013-0307-7