Skip to main content
Log in

A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a subgradient-type method for solving nonsmooth multiobjective optimization problems on Riemannian manifolds is proposed and analyzed. This method extends, to the multicriteria case, the classical subgradient method for real-valued minimization proposed by Ferreira and Oliveira (J. Optim. Theory Appl. 97:93–104, 1998). The sequence generated by the method converges to a Pareto optimal point of the problem, provided that the sectional curvature of the manifold is nonnegative and the multicriteria function is convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gal, T., Hanne, T.: On the development and future aspects of vector optimization and MCDM. In: Cláco, J. (ed.) Multicriteria Analysis, pp. 130–145. Springer, Berlin (1997)

    Chapter  Google Scholar 

  2. White, D.J.: A bibliography on the applications of mathematical programming multiple objective methods. J. Oper. Res. Soc. 41, 669–691 (1990)

    MATH  Google Scholar 

  3. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mäkelä, M.M., Männikkö, T.: Numerical solution of nonsmooth optimal control problems with an application to the continuous casting process. Adv. Math. Sci. Appl. 4, 491–515 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Miettinen, K., Mäkelä, M.M.: An interactive method for nonsmooth multiobjective optimization with an application to optimal control. Optim. Methods Softw. 2, 31–44 (1993)

    Article  Google Scholar 

  8. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Udriste, C.: Convex Functions and Optimization Algorithms on Riemannian Manifolds. Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994)

    Book  Google Scholar 

  10. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52(5), 1491–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Attouch, H., Bolte, J., Redont, P., Teboulle, M.: Singular Riemannian barrier methods and gradient-projection dynamical systems for constrained optimization. Optimization 53(5–6), 435–454 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rapcsák, T.: Local convexity on smooth manifolds. J. Optim. Theory Appl. 127(1), 165–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Azagra, D., Ferrera, J., López-Mesas, M.: Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31(1), 133–151 (2005)

    Article  MATH  Google Scholar 

  16. Cruz Neto, J.X., Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Glob. Optim. 35, 53–69 (2006)

    Article  MATH  Google Scholar 

  17. Ferreira, O.P.: Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313, 587–597 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, J.H., Li, C.: Uniqueness of the singular points of vector fields on Riemannian manifolds under the γ-condition. J. Complex. 22(4), 533–548 (2006)

    Article  MATH  Google Scholar 

  19. Li, C., Wang, J.H.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition. IMA J. Numer. Anal. 26(2), 228–251 (2006)

    Article  MathSciNet  Google Scholar 

  20. Ledyaev, Yu.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8, 197–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant α-theory. J. Complex. 24, 423–451 (2008)

    Article  MATH  Google Scholar 

  23. Papa Quiroz, E.A., Quispe, E.M., Oliveira, P.R.: Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds. J. Math. Anal. Appl. 341(1), 467–477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Barani, A., Pouryayevali, M.R.: Invariant monotone vector fields on Riemannian manifolds. Nonlinear Anal. 70(5), 1850–1861 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 49–69 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Wang, J.H., Huang, S.C., Li, C.: Extended Newton’s algorithm for mappings on Riemannian manifolds with values in a cone. Taiwan. J. Math. 13, 633–656 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Wang, J.H., Lopez, G., Martin-Marquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523–1560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tang, G., Huang, N.: Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Glob. Optim. 54(3), 493–509 (2011)

    Article  MathSciNet  Google Scholar 

  33. Wang, J.H., Yao, J.C., Li, C.: Gauss–Newton method for convex composite optimizations on Riemannian manifolds. J. Glob. Optim. 53(1), 5–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bento, G.C., Melo, J.G.: A subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154, 88–107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ferreira, O.P., Silva, R.C.M.: Local convergence of Newton’s method under majorant condition in Riemannian manifolds. IMA J. Numer. Anal. 32, 1696–1713 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balk. J. Geom. Appl. 3(2), 89–100 (1998)

    MATH  Google Scholar 

  39. Shor, N.Z.: Minimization Algorithms for Non-differentiable Function. Springer, Berlin (1985)

    Book  Google Scholar 

  40. Polyak, B.T.: Minimization of nonsmooth functionals. USSR Comput. Math. Math. Phys. 9, 14–29 (1969)

    Article  Google Scholar 

  41. Alber, Ya.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81(1), 23–35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Bertsekas, D.P., Nedic, A.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 56(1), 109–138 (2001)

    MathSciNet  Google Scholar 

  43. Burachik, R.S., Iusem, A.N., Melo, J.G.: A primal dual modified subgradient algorithm with sharp Lagrangian. J. Glob. Optim. 46(3), 347–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97, 93–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  46. Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. Am. Math. Soc., Providence (1996)

    MATH  Google Scholar 

  47. Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balk. J. Geom. Appl. 5(1), 69–79 (2000)

    MATH  Google Scholar 

  48. Luc, T.D.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)

    Book  Google Scholar 

  49. Fliege, J., Grãna Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude toward anonymous referees whose suggestions helped us to improve the presentation of this paper. The first author was partially supported by CNPq Grant 471815/2012-8, Project CAPES-MES-CUBA 226/2012, PROCAD-nf-UFG/UnB/IMPA, and FAPEG/CNPq. The second author was partially supported by CNPq GRANT 301625-2008 and PRONEX-Optimization (FAPERJ/CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Bento.

Additional information

Communicated by Alfredo Iusem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bento, G.C., Cruz Neto, J.X. A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds. J Optim Theory Appl 159, 125–137 (2013). https://doi.org/10.1007/s10957-013-0307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0307-7

Keywords