Skip to main content
Log in

Heston Model: The Variance Swap Calibration

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper features a market implied methodology to infer adequate starting values for the spot and long-run variances and for the mean reversion rate of a calibration exercise under the Heston model. More particularly, these initial parameters are obtained by matching the term structure of the future expected total variance, inferred from the volatility surface, with the model term structure. In the numerical study, we compare the goodness of fit and the parameter stability of the Heston model calibrated by using either plausible random or market implied starting values for a one-year sample period including the recent credit crunch. In particular, we show that the proposed methodology avoids getting stuck in one “bad” local minimum and stabilizes the calibrated parameters through time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. An out-of-the-money call option is characterized by K i >F 0 and an out-of-the-money put option by K i <F 0.

  2. Arbitrage opportunities can only be detected from the term structure of the cumulated variance v(T) and not from the term structure of the annualized variance, i.e., \(\text{VIX}^{2}(T) := \frac{1}{T} \mbox{v}(T)\), due to the scaling by the time horizon T in the annualized variance. This explains why we have opted for fitting the total variance curve instead of the annualized variance one.

References

  1. Guillaume, F., Schoutens, W.: Illustrating the impact of calibration risk under the Heston model. Rev. Deriv. Res. 15(1), 57–79 (2012)

    Article  Google Scholar 

  2. Mikhailov, S., Nögel, U.: Heston’s stochastic volatility model implementation, calibration and some extensions. Wilmott Mag. July, 74–79 (2003)

    Google Scholar 

  3. Forde, M., Jacquier, A., Mijatovic, A.: Asymptotic formulae for implied volatility in the Heston model. Proc. R. Soc. A, Math. Phys. Eng. Sci. 466(2124), 3593–3620 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gatheral, J., Jacquier, A.: Convergence of Heston to SVI. Quant. Finance 11(8), 1129–1132 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lee, R.W.: The moment formula for implied volatility at extreme strikes. Math. Finance 14(3), 469–480 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Breeden, D., Litzenberger, R.: Prices of state contingent claims implicit in option prices. J. Bus. 51(6), 621–651 (1978)

    Article  Google Scholar 

  7. Chicago Board Options Exchange: The CBOE volatility index—VIX. Working paper, Chicago (2003)

  8. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  Google Scholar 

  9. Wilmott, P.: Paul Wilmott on Quantitative Finance. Wiley, New York (2006)

    MATH  Google Scholar 

  10. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53(2), 385–407 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Demeterfi, K., Derman, E., Kamal, M., Zou, J.: More than You Ever Wanted to Know About Volatility Swaps. Quantitative Strategies Research Notes (1999). Goldman Sachs

    Google Scholar 

  12. Whaley, R.E.: Understanding the VIX. J. Portf. Manag. 35(3), 98–105 (2009)

    Article  Google Scholar 

  13. Gatheral, J.: The Volatility Surface—A Practitioner’s Guide. Wiley, New York (2006)

    Google Scholar 

  14. Murphy, D.: The causes of the credit crunch: a backwards look? Quant. Finance 9(7), 775–790 (2009)

    Article  MathSciNet  Google Scholar 

  15. Schöbel, R., Zhu, J.: Stochastic volatility with an Ornstein–Uhlenbeck process: an extension. Eur. Finance Rev. 3, 23–46 (1999)

    Article  MATH  Google Scholar 

  16. Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. 63, 167–241 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guillaume, F., Schoutens, W.: A moment matching market implied calibration. Quant. Finance (2013). doi:10.1080/14697688.2013.794950

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Guillaume.

Additional information

Florence Guillaume is a postdoctoral fellow of the Fund for Scientific Research–Flanders (Belgium) (F.W.O.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillaume, F., Schoutens, W. Heston Model: The Variance Swap Calibration. J Optim Theory Appl 161, 76–89 (2014). https://doi.org/10.1007/s10957-013-0331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0331-7

Keywords

Navigation