Skip to main content
Log in

Constructions of Solutions to Generalized Sylvester and Fermat–Torricelli Problems for Euclidean Balls

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The classical problem of Apollonius is to construct circles that are tangent to three given circles in the plane. This problem was posed by Apollonius of Perga in his work “Tangencies.” The Sylvester problem, which was introduced by the English mathematician J.J. Sylvester, asks for the smallest circle that encloses a finite collection of points in the plane. In this paper, we study the following generalized version of the Sylvester problem and its connection to the problem of Apollonius: given two finite collections of Euclidean balls, find the smallest Euclidean ball that encloses all the balls in the first collection and intersects all the balls in the second collection. We also study a generalized version of the Fermat–Torricelli problem stated as follows: given two finite collections of Euclidean balls, find a point that minimizes the sum of the farthest distances to the balls in the first collection and shortest distances to the balls in the second collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sylvester, J.J.: A question in the geometry of situation. Q. J. Pure Appl. Math. 1, 79 (1857)

    Google Scholar 

  2. Alonso, J., Martini, H., Spirova, M.: Minimal enclosing discs, circumcircles, and circumcenters in normed planes (Part I). Comput. Geom. 45, 258–274 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alonso, J., Martini, H., Spirova, M.: Minimal enclosing discs, circumcircles, and circumcenters in normed planes (Part II). Comput. Geom. 45, 350–369 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cheng, D., Hu, X., Martin, C.: On the smallest enclosing balls. Commun. Inf. Syst. 6, 137–160 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Drager, L., Lee, J., Martin, C.: On the geometry of the smallest circle enclosing a finite set of points. J. Franklin Inst. 344, 929–940 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Nielsen, F., Nock, R.: Approximating smallest enclosing balls with applications to machine learning. Int. J. Comput. Geom. Appl. 19, 389–414 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pedoe, D.: Geometry—A Comprehensive Course. Dover, New York (1988)

    MATH  Google Scholar 

  8. Welzl, E.: Smallest enclosing disks (balls ellipsoids). In: Maurer, H. (ed.) Lecture Notes in Comput. Sci., vol. 555, pp. 359–370. Springer, Berlin (1991)

    Google Scholar 

  9. Boltyanski, V., Martini, H., Soltan, V.: Geometric Methods and Optimization Problems. Kluwer Academic, Dordrecht (1999)

    Book  MATH  Google Scholar 

  10. Giannessi, F.: Constrained Optimization and Image Space Analysis Separation of Sets and Optimality Conditions, vol. 1. Math. Concepts Methods Sci. Engrg., vol. 49. Springer, New York (2005)

    Google Scholar 

  11. Kuhn, H.W.: Steiner’s problem revisited. Stud. Math. 10, 52–70 (1974)

    Google Scholar 

  12. Kupitz, Y.S., Martini, H.: Geometric aspects of the generalized Fermat–Torricelli problem. In: Intuitive Geometry, Bolyai Society of Mathematical Studies, vol. 6, pp. 55–127 (1997)

    Google Scholar 

  13. Kupitz, Y.S., Martini, H., Spirova, M.: The Fermat–Torricelli problem, Part I: A discrete gradient-method approach, 27 pp. J. Optim. Theory Appl. To appear

  14. Martini, H., Swanepoel, K.J., Weiss, G.: The Fermat–Torricelli problem in normed planes and spaces. J. Optim. Theory Appl. 115, 283–314 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tan, T.V.: An extension of the Fermat–Torricelli problem. J. Optim. Theory Appl. 146, 735–744 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Weiszfeld, E.: On the point for which the sum of the distances to n given points is minimum. Ann. Oper. Res. 167, 7–41 (2009)

    Article  MathSciNet  Google Scholar 

  17. Mordukhovich, B.S., Nam, N.M.: Applications of variational analysis to a generalized Fermat–Torricelli problem. J. Optim. Theory Appl. 148, 431–454 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nam, N.M., An, N.T., Salinas, J.: Applications of convex analysis to the smallest intersecting ball problem. J. Convex Anal. 19, 497–518 (2012)

    MATH  MathSciNet  Google Scholar 

  19. Mordukhovich, B.S., Nam, N.M., Villalobos, C.: The smallest enclosing ball problem and the smallest intersecting ball problem: existence and uniqueness of optimal solutions. Optim. Lett. 154, 768–791 (2012)

    Google Scholar 

  20. Nam, N.M., Hoang, N.: A generalized Sylvester problem and a generalized Fermat–Torricelli problem. J. Convex Anal. To appear

  21. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples, 2nd edn. Springer, New York (2006)

    Book  MATH  Google Scholar 

  22. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Fundamentals. Springer, Berlin (1993)

    Google Scholar 

  23. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  24. Gisch, D., Ribando, J.M.: Apollonius’ problem: a study of solutions and their connections. Am. J. Undergrad. Res. 3, 15–26 (2004)

    Google Scholar 

  25. Chi, E., Lange, K.: A look at the generalized Heron problem through the lens of majorization-minimization. Am. Math. Mon. To appear

Download references

Acknowledgements

The research of Nguyen Mau Nam was partially supported by the Simons Foundation under Grant #208785. The research of Nguyen Hoang was partially supported by the NAFOSTED, Vietnam, under Grant # 101.01-2011.26. The authors would like to thank the referees for reading the paper carefully and giving valuable comments/suggestions that help improve the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Mau Nam.

Additional information

Communicated by Horst Martini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, N.M., Hoang, N. & An, N.T. Constructions of Solutions to Generalized Sylvester and Fermat–Torricelli Problems for Euclidean Balls. J Optim Theory Appl 160, 483–509 (2014). https://doi.org/10.1007/s10957-013-0366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0366-9

Keywords